Using the TMS370
SPI and SCI Modules

Kevin C. Self
Microcontroller Applications Engineering

Semiconductor Group
Texas Instruments Incorporated

Contributions by Paul Krause, Mark Palmer, and Al Lovrich

AU
Texas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. Tl advises its customers to obtain the latest version of the relevant in-
formation to verify, before placing orders, that the information being relied
upon is current.

T| warrants performance of its semiconductor products to current specifica-
tions in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

TI assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent that license, either express or implied,
arantad 1indar any natant rinht nnuri

granted under any patent right, copyright, mask work right, or other 'nfﬂ”w-

tual property right of Tl covering or relatlng to any combination, machine, or
process in which such semiconductor products or services might be or are
used.

Copyright © 1988, Texas Instruments Incorporated

Contents

Section Page
1 Introduction 11
2 Module Description: Serial Peripheral Interface (SPI) 21
21 TheSPl-How lItWorks 2-2
2.2 SPlIOperatingModes 2-3
2.21 The Master Mode 2-3
222 The Slave Mode Lo 2-3
2.3 Configuringthe SPIo 2-4
2.31 SPI| Data Format - Transmitting and Receiving 2-4
232 The SPICLK and Data Transfer Rate 2-5
2.4 Controlling the SPI through Interrupts and Flag Checking 2-6
2.5 The TALK Bit and Multiprocessor Communications 2-7
2.6 Considerations When Usingthe SPI 2-7
2.7 Datalntegrityand the SPIo 2-8
3 SPI Module Software Examples 3-1
3.1 Master SPI Configuration 3-2
3.2 Slave SPI Configuration 3-3
3.3 Dynamic Bit Justificationo 3-4
3.4 Address Recognition by SPIo oL 3-5
4 SPI Module Specific Applications 4-1
4.1 Vacuum Fluorescent Display Driver 4-2
411 Use SPI to Transmit Data to Serial Shift Register 4-2
4.2 Bootstrap Loader 4-8
4.2.1 Reprogram Data or Program Memory through SPI Port 4-8
4.3 DSP Controller 4-9
4.31 Interface TMS370SPI to TMS320C25DSP 4-9
5 SCI Module Description 5-1
51 TheSCI-How ItWorks 5-2
5.2 Choosing SCI Protocols and Formats 5-3
53 The SCISWRESET Bit 5-4
5.4 Operating Modes of the SCI 5-5
55 Setting the SCICLK Pins and Baud Rate 5-6
56 SCI Receiver Operation 5-7
5.7 SCI Transmitter Operation 5-9
58 SClinterruptsand Flags 5-11
5.9 Multiprocessor Communications L 5-12
5.9.1 Using the SLEEP Bit 5-12
592 Using the TXWAKE Bit 5-13
593 Disabling the SCI Transmitter 5-13
594 Choosing the Right Protocol e 5-13
510 Timing the FlowofData 5-14
5101 Transmitting 5-14
510.2 Receiving 5-14

5.11
512

coooo
HPWN =

NNNNNNN

WWNN - =

mgogoOow>

Detecting Transmission Errors
What to Do with Transmission Errors

SCI Module Software Examples

SLEEP Bit - Multiprocessing Control
System Controller Configuration
Nine-Bit Data Protocol
HALT Mode Wakeup Using the SCI Receiver

SCI Module Specific Applications

RS-232-Clinterface
interface TMS370C050 to RS-232-C Connection

Dumb-Terminal Driver
Use TMS370C050 SCI to Interface to Dumb-Terminal

Low-Power Remote Data Acquisition
Use TMS370C050 in STANDBY Mode with SCIRX Wake-Up Procedure

SPI Control Registers
SCI Control Registers
TMSO0170 Specifications
Glossary

References

_

Illustrations

Figure

2-1 SPIBlock Diagram
2-2 SPIl Master/Slave Connectiont
4-1 Vacuum Flourescent Interface Example
4-2 Flowchart of Bootstrap Loader Interrupt Service Routine
4-3 TMS370C010 - TMS320C25 Interface Example
4-4 Continuous Mode No Frame Synchronization Pulse
5-1 SCIBlock Diagram
5-2 SCl Data Frame Formats i
5-3 Asynchronous Communication Format
5-4 Isosynchronous Communication Format
5-5 Receiver Operation Flowchart.
5-6 Transmitter Operation Flowchart
7-1 TMS370C050 - RS-232-C Interface Example
7-2 Terminal Interface Example
7-3 Remote Data Acquisition Example
A-1 SPI Control Registers
B-1 SCI Control Registers
C-1 TMSO0170 Block Diagram
C-2 TMSO170DIP Pin Qut

Tables

Table

2-1 SPI Character Bit Length
2-2 SPIClock Frequency
2-3 Baud Rates for SPI Bit Rate Values
3-1 Common Equate Table
5-1 Transmitter Character Bit Length
5-2 Asynchronous Baud Rate Register Values for Common SC| Baud Rates ..
6-1 Common Equate Table

<

Vi

Section 1

Introduction

The TMS370 family of 8-bit microcontrollers has been designed with special
features to facilitate serial communications. Both the TMS370X5X and
TMS370CX10 devices incorporate the Serial Peripheral Interface (SPl) mod-
ule. The TMS370X5X device also contains the Serial Communications Inter-
face (SCI) module. These two modules greatly enhance the ability of the
microcontroller to interface to other serial devices and common interfaces such
as the industry standard RS-232. External hardware and software overhead
are reduced by the flexibility and programmability of the interfaces.

This application report provides examples of hardware interfaces and software
routines to illustrate the versatility of the SPI and SCI modules. Common ap-
plications of these modules will be discussed, which may be modified to suit
the engineer’s specific needs. Additional information on the Serial Interfaces
may be found in the TMS370 Family Data Manual.

1-1

Introduction

1-2

Section 2

Module Description: Serial Peripheral Interface
(SPI)

Module Description: Serial Peripheral Interface (SPI)

2.1 The SPiI - How It Works

The SPI module is a high-speed synchronous serial I1/0 port that shifts a serial
bit stream of variable length and data rate between the device and other pe-
ripheral devices. The SPI is especially suited for multiprocessor and external
peripheral communications, where the designer needs high-speed synchro-
nous data transfer. The use of the SPI can greatly reduce overhead when
connecting several peripherals together by transferring address or status in-
formation. The SPI can be used to communicate with other microcontrollers,
serial shift registers, or display drivers. In addition, the SPI can be used to load
memory (RAM or EEPROM) and allow the device to be reprogrammed in-
socket.

A block diagram of the SPI is shown in Figure 2-1. In its simplest form, the
SPI can be thought of as a fast, programmable shift register. Data is shifted
in and out of the SPI through the SPIDAT register. Data to be transmitted is
written to the SPIDAT register and received data is latched into the SPIBUF
register to be read. Data transmission rates and data formatting are controlled
by the SPI state logic.

37

SPIBUF BUFFER
REGISTER 8 — OVERRUN 317

SYS
CLOCK

2-2

PT
SPI INTERRU 510 PRIORITY 0 | oo 1 INTREQ
FLAG oo
| FLAG |
INT ENA 3F.6 o LEVEL 2 INTREQ
316
M
oM
N s
o & SPISIMO PIN
[}
3 o
- oo N
TALK o—e—&S SPISOMI PIN

! MASTER/SLAVE MD
312

............................

)
]
l BITS/CHAR \ i
]
30.| 2 1 0 1
:
|)
CLOCK RATE]————o/o———lr—{ POLARITY fff—gﬁi SPICLK
3. 5 | 4 | 3 30.6

Figure 2-1. SPI Block Diagram

Module Description: Serial Peripheral Interface (SPI)

2.2 SPIl Operating Modes

2.2.1 The Master Mode

The SPI operates in one of two modes. The Master mode is used when the
SPI controls the data transfer. The Master SP| initiates and controls the data
transfer by issuing the SPICLK signal. Writing data to the SPIDAT buffer
starts the transfer by starting SPICLK and shifting the data out of the SPIDAT
shift register onto the SPISIMO pin. New data are simultaneously gated in
on the SPISOMI pin into the SPIDAT buffer.

Since the Master device controls the data transfer by issuing the SPICLK, the .
other devices must wait for the Master to start the transmission. Even if the
Master is only interested in receiving data, it is still necessary to write
"dummy” data to the SPIDAT register to initiate the transfer from the slave or
external source.

Because of the way data are shifted through the SPIDAT Register, any data
value in SPIDAT is always modified after a transmission, even if no new data
value has been received into the register. The SPIDAT register will contain
indeterminate data because no new data have been received.

2.2.2 The Slave Mode

The Slave mode is used when the SPI is controlled by another serial device.
In the Slave mode, the SPI is dependent on an external clock source from a
Master configured device to control the data transfer. An element of data re-
sident in the SPIDAT buffer is shifted out upon receipt of a clock signal on the
SPICLK pin, which in Slave mode becomes an input pin. Simultaneously, any
data present on the SPISIMO pin are shifted into the SPIDAT register. The
data transmission of a slave can be disabled by clearing the TALK bit. This
allows many devices to be tied to the same serial network, but eliminates the
possibility of write conflicts. Figure 2-2 illustrates two TMS370 devices in a
Master/Slave connection.

2-3

Module Description: Serial Peripheral Interface (SPI)

SPI MASTER (MASTER/SLAVE = 1)

6P SLAVE (MASTER/SLAVE = 0)

1
siMo | SLAVEIN/ | g0 5
| MASTER | |
iouT i : i
SERIAL INPUT BUFFER . . SERIAL INPUT BUFFER |
(SPIBUF) ' : (SPIBUF) !
1] i
1 t]
]) '
' ' H
% i i |
1 1
SHIFT REGISTER som | SLAVE OUT, som SHIFT REGISTER ;
(SPIDAT) " MASTER | (SPIDAT) :
msb Isb H IN ! msb Isb !
1 i i
1]]
H | '
| SERIAL |
vV
PROCESSOR 1 SCLK mClock ™ SCLK PROCESSOR 2 |

Figure 2-2. SPIl Master/Slave Connection

2.3 Configuring the SPI

Data format, baud rate, interrupt generation, and operating mode are con-
trolled by setting the SPI control registers shown in Appendix A. The SPI
should be in an SPI SW RESET condition before changing any of the config-
uration registers. This freezes the state of the SPI while it is being configured.
After setting the SPI parameters, release the reset. Before initiating a data
transmission you need to initialize the parameters discussed in the following
sections.

2.3.1 SPI Data Format - Transmitting and Receiving

2-4

Character length is programmable and can be set by the user from 1 to 8 bits.
This is done by setting SPICCR bits 0-2 to the appropriate values shown in
Table 2-1. If the character length is fewer than 8 bits, it 1s important to note
the following:

1) Data must be wntten to SPIDAT left justified Data is shifted out of the
SPIDAT register MSB first, and 1f the character i1s not left justified the
data wiil be corrupted

) Data s receved into SPIDAT nghtjustitied The MSB of the transmitted
data s shifted into the LSB of SPIDAT and waiked across For character
lengths - 8 bits there wal! be oxtia bas contanang information from
previous transnussions that must be accounted (ot

Module Description: Serial Peripheral Interface (SPI)

2.3.2 The SPICLK and Data Transfer Rate
The rate at which data are transferred out of SPIDAT is programmed by the

SPI Bit Rate bits (SPICCR.3-5).

The rate can be set from CLKIN/8 to

CLKIN/1024 as shown in Table 2-2. The SPICLK rate is only utilized in the
Master mode; in Slave mode the SPICLK rate is irrelevant because the clock
signal is external. The SPICLK is output anytime a write is made to SPIDAT
and the device is in the Master mode. The polarity of the clock bit can be set
by the user (SPICCR.6) to latch the data on the rising or falling edge of the
clock pulse. When an external clock is being used (Slave mode), the input
clock frequency cannot be greater than CLKIN/32 to allow the internal clocks

to synchronize.

Table 2-1. SPI Character Bit Length

Character
Char2 Char1 Char0 Length
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8
Table 2-2. SPI Clock Frequency
SPIt SPIt SPIt
Bit Bit Bit SPI Clock
Rate2 Ratel RateO Frequency
0 0 0 CLKIN/8
0 0 1 CLKIN/16
0 1 0 CLKIN/32
0 1 1 CLKIN/64
i 0 0 CLKiN/128
1 0 1 CLKIN/256
1 1 0 CLKIN/512
1 1 1 CLKIN/1024

tIf the SPI is a network slave, the module receives a clock
on the SPICLK pin from the network master; and these bits
have no effect on SPICLK. The frequency of the input
clock should be no greater than the CLKIN frequency
divided by 32.

2-5

Module Description: Serial Peripheral Interface (SPI)

A table showing the baud rates for common crystal frequencies vs. SPI bit rate
values is shown below. See Table 2-3. The values were found using the for-
mula

SPI BAUD RATE = CLKIN / (8 x 2b)

where b = bit rate specified in the SPI Control Register (SPICCR.5-3)
(range 0-7).

Table 2-3. Baud Rates for SPI Bit Rate Values

Crystal/Oscillator Frequency (MHz)

Divide By 2.00 5.00 10.00 15.00 20.00
8 250000 625000 1250000 1875000 2500000
16 125000 312500 625000 937500 1250000
32 62500 156250 312500 468750 625000
64 31250 78125 156250 234375 312500
128 15625 39062.5 78125 117187. 156250
256 7812.5 19531.2 39062.5 58593.7 78125
512 3906.25 9765.62 19531.2 29296.8 39062.5
1024 1953.12 4882.81 9765.62 14648.4 19531.2

2.4 Controlling the SPI through Interrupts and Flag Checking

2-6

The SPI interrupt logic can generate an interrupt upon receiving or transmit-
ting a complete character as determined by the SPI character length. This
provides a convenient and efficient way to handle the reception or trans-
mission of data.

The interrupt can be enabled or disabled using the SPI INT ENA bit
(SPICTL.0), and the interrupt priority set with the SPI PRIORITY bit (SPI-
PRIL.6). Whether or not the SPI interrupt is enabled, the SPI INT flag
(SPICTL.6) will be set upon the transmission or reception of a character. The
SPI INT flag cannot be cleared as it is Read Only, but it is automatically
Even if a data value is not going to be saved, it is still necessary to do a
"dummy” read to clear the SPI INT flag. If the flag is not cleared and the in-
terrupts are enabled then the interrupt routine will be called again as soon as
it is completed.

Data transmission is not instantaneous in the SPI. It will be necessary to wait
for the SPI to transmit or receive a character before reading from or writing to
the SPIDAT register again. There are two ways to do this:

1) When the SPI has transmitted or received new data the SPI INT routine
will be generated if enabled. The character is ready to be read if it was
just received, or a new character can be transmitted if desired.

Module Description: Serial Peripheral Interface (SPI)

2) If the program cannot do anything until the new data value is received
or transmitted, the SPI INT flag can be continuously polied until it goes
high, at which time the character is ready to be read or a new one tran-
smitted.

It is important to use one of the above methods to wait for the data before
reading or writing again. Also, if the exact number of cycles is known, the
transmission can be timed that way. When doing fast data transfers where
the possibility of a data collision exists, polling the RECEIVER OVERRUN flag
(SPICTL.7) will indicate if you have lost any data.

2.5 The TALK Bit and Multiprocessor Communications

If more than two processors are going to be connected to the same SP| data
lines (SPISIMO/SPISOMI), then it will be necessary to limit the conversation
to just two processors at a time. This is done through software using the TALK
bit (SPICTL.1). When the TALK bit is O, data transmission is disabled, but
not reception. One device, usually (but not necessarily) the Master, sends out
an address to the other devices in the network, who have their TALK bits set
to 0. Since reception is not affected, all devices receive the transmitted ad-
dress and compare it against their own address. If it matches, then that device
sets its TALK bit and begins transmitting data. When it finishes, the receiving
device clears its TALK bit and the network waits for another address. Another
scheme for using the TALK bit is to have groups of characters (10 or so)
transmitted in a block and have the address be the first character transmitted
in a block. This way the address will occur at regular intervals and address
checking does not need to be done constantly.

2.6 Considerations When Using the SPI

The most important thing to remember when writing SPI service routines is
to keep your code short. Received data should be quickly removed from the
SPIBUF register to prevent it from being overwritten. |f you have to manipu-
late the data, wait until all the data have been received first. If your code in-
voives iong SPi routines there is a possibiiity that new data wiii be received
before the previous data value has been read from the SPI buffer register. This
becomes more and more important as the SPI baud rate increases.

2-7

Module Description: Serial Peripheral Interface (SPI)

2.7 Data Integrity and the SPI

2-8

The SPI was designed as a fast, simple interface to serial logic. As a result, it
has no direct way to check for transmission errors. There are a number of
software methods that can be used to check the integrity of the transmission.
Parity checking is one of the most common and can be easily implemented in
software for the SPI. Parity checking involves reserving one bit of the char-
acter to be used in setting the total number of 1s in a character odd or even.
The Design Aids section of the TMS370 Family Data manual contains an ex-
ample of a parity checking routine.

If you are going to be sending large blocks of data, there are coding methods
that allow faster data transfer but still insure data integrity. Block checksums
and other encoding methods can be found in most books on digital commu-
nications. These methods allow some degree of data integrity without signif-
icantly slowing the data transfer rate.

Section 3

SPI _Module Software Examples

The following are examples of the various modes of operation and common
software routines used in the utilization of the SPI. The SPI Control Registers
are.shown in Appendix A. The Register Equate table for the following exam-
ples is shown below.

Table 3-1. Common Equate Table

SPICCR .equ P0O30 ;SPI Configuration, Control Register
SPICTL .equ PO31 ;SPI Operation Control Register
SPIBUF .equ P037 ;jSerial Input Buffer

SPIDAT .equ P039 ;Serial Data Register

SPIPC1 .equ PO3D ;SPI Port Control Register 1

SPIPC2 .equ PO3E ;SPI Port Control Register 2

SPIPRI .equ PO3F ;SPI Priority Control Register

3-1

SPI Module Software Examples

SETMASTER

SENDDATA
WAIT

3-2

3.1 Master SPI Configuration

This routine will show how to configure the SPI to operate in the Master
mode. Data will be sent to a peripheral device. The value needed for the SPI
Bit rate register is computed from the formula:

SPI BAUD RATE = CLKIN / (8 x 2b)

where b is the bit rate from SPICCR.3-5, in the range from 0-7. This is im-
portant in applications where it is necessary to fix the real-time frequency of
SPICLK, such as interfacing to slow peripheral logic.

The SPI in this example with a CLKIN of 20 MHz is connected to a shift reg-
ister with a maximum operating frequency of 250 KHz. The bit rate needed is

b = logy [CLKIN é (SPI BAUD RATE x 8)]
b =logy [20 x 10% / (250 x 103 x 8)] = 3.35 (approximately)

Since only integers are allowed, the bit rate should be set to the next highest
value, i.e., 4, which is CLKIN / 128. This gives an actual SP| BAUD Rate of
1566.25 KHz, which is within the operating range of the shift register. The
character size will be 8 bits.

MOV #0E7h,SPICCR ;SPI Reset, clock active low, /128, 8 bits
MoV #006h,SPICTL ;Master Mode, Enable TALK, Disable SPI INT
MOV #002h,SPIPC1 ;Set for SPICLK out

MOV #022h,SPIPC2 ;Enable SPISOMI, SPISIMO pins for SPI

MOV #040h, SPIPRI ;SPI interrupts are low priority

AND #067h,SPICCR ;Release SPI Reset
. ;Execute main program here. When ready
; to transmit, call subroutine

CALL SENDDATA ;Execute subroutine

MOV DATAQUT, SPIDAT ;Move data to SPIDAT, initiate transmission
BTJZ #040h,SPICTL,WAIT ;Loop until transmission complete

MOV SPIBUF,DUMMY ;Dummy read to clear SPI INT flag

RTS ;Return to main program

SPI Module Software Examples

3.2 Slave SPI Configuration

This routine will show how to use the SPI interrupt to interrupt a program and
load two 8-bit characters from the SPI. The program will call the SPI Interrupt
upon receipt of an 8-bit character, save it, and wait for one more character.
It will then save the values, and return to the main program. The characters
will be saved in DATAMSB and DATALSB.

SETSLAVE

SPIINTR
WAIT

DINT
MOV
MOV

MOV
MOV
MOV
MOV
EINT

MOV
BTJZ
MOV
RTI

#0E7h,SPICCR
#001h,SPICTL

#002h,SPIPC1
#022h,SPIPC2
#040h,SPIPRI
#067h,SPICCR

SPIBUF,DATAMSB
#040h,SPICTL,WAIT
SPIBUF,DATALSB

;Disable Global interrupts.

;SPI Reset, clock active low, /128, 8 bits.

;Slave mode, TALK disable, SPI INT Enable.

;Set SPICLK.

;Enable SPISOMI, SPISIMO pins for SPI.
;SPI interrupts are low priority.
jRelease SPI RESET.

;Enable global interrupts.

;Insert main part of program here. SPI

; INT will fetch characters when first
; is detected.

;Save first character already in buffer.

;Wait until second character is received.

;Save second character.
;Return to main program.

3-3

SPiI Module Software Examples

3.3 Dynamic Bit Justification

LJUSTIFY

ROLL
DONE

3-4

On occasion it may be necessary to transmit characters of length less than 8
bits. As stated previously, the data need to be left-justified for transmitting
from SPIDAT and right-justified when read from SPIBUF. If the SPI is ac-
cessing several peripherals with different character lengths, it may be more
efficient to have one subroutine justify all the transmitted data.

This routine reads the value of the character length stored in SPICCR.0-2 and
left-justifies the data to be transmitted as needed. If the character length is
less than 5 bits, the routine swaps nibbles to save time. The value to be
transmitted is stored in register DATA.

MOV SPICCR,NUMBITS ;Save character length in temp register.

XOR #0OFFh ,NUMBITS ;8 - numbits = number of shifts.

AND #007h ,NUMBITS ;clear all bits except character length.

BTJZ #004h,NUMBITS,ROLL ;If < 4 shifts needed go to roll routine.
SWAP DATA ;More than 4 shifts, swap is faster.

SUB #004h ,NUMBITS ;Since we swapped, 4 rolls are complete.

JZ DONE ;If only 4 rolls needed we are done.

RL DATA ;Rotate one bit left.

DJNZ NUMBITS,ROLL ;If not done rctating, continue.

MOV DATA,SPIDAT ;Data is now left justified, transmit.

SPI Module Software Examples

3.4 Address Recognition by SPI

SPIINTR

WAIT
DONE

In multiprocessor systems using the SPI for communication it is necessary to
keep conversations limited to two microprocessors at a time. The TALK bit is
used to disable the transmit ability of a TMS370 in Slave mode until it sees its
address, MYADDRESS, at which time it will transmit a byte of data. This ex-
ample shows the SPI interrupt routine which is called when a character is re-
ceived. If it is the correct address, the TALK bit is set, SPIDAT is loaded, and
the TALK bit is cleared once again.

MoV SPIBUF ,ADDRESS ;Store received address

CMP #MYADDRESS ,ADDRESS ;Is it my address?

JINZ DONE ;If not, ignore transmission.

OR #002h,SPICTL ;Set TALK bit.

MOV DATA, SPIDAT ;Load transmit buffer, wait for clock

; from "master".
BTJZ #040h,SPICTL,WAIT ;Wait until character is sent.

MOV SPIBUF, DUMMMY ;Dummy read to clear SPI INT flag
AND #0FDh, SPICTL ;Clear TALK bit.
RTI ;Return from interrupt.

3-5

SPI Module Software Examples

Section 4

SPI Module Specific Applications

4-1

SPI Module Specific Applications

4.1 Vacuum Fluorescent Display Driver

41.1 Use SPI to Transmit Data to Serial Shift Register

One common and very practical use of an SPI is sending serial data to a dis-
play. The use of simple software routines can simplify your design and elimi-
nate expensive external hardware such as decoders. This example interfaces
a TMS370C010 microcontroller to a vacuum fluorescent display. The only
external logic necessary is one TMS0170 VF Display Driver. This device is a
33-bit shift register/display driver and is especially suited for serial display
applications. The design uses only SPI and Timer 1 pins, so the designer does
not need to dedicate any more I/O pins to the design. The schematic shown
is for a generic serial display application, and it can be easily modified to work
with an LED or LCD display.

SPI Module Specific Applications

4 DIGIT DISPLAY

TMS0170 COMMON ANODE
N—14170 p3}28 air 33 K3 SEGMENT 1-A
131, D4 |28 BIT 32 : SEGMENT 1-B
\——:ol A2 ps 5 BT 31 K2 SEGMENT 1-C
N—1%,3 e 1 BIT 30 8 SEGMENT 1-D
N—3aa o7}2 BiT 29 122 SEGMENT 1-E
\——-.8,— AB 23) BIT 28 :;’ SEGMENT 1-F
N SPISIMO = S{DATA IN BiT 27 |23 SEGMENT 1-G
N——3ay SPICLK > cLoCK BiT 26 |23 SEGMENT 2-A
21 40 BIT 26 34 SEGMENT 2-B
T1PWM 20 38 BLANK BIT 24 7 SEGMENT 2-C
TIEVT |22 LOAD ENABLE BIT 23 |1 SEGMENT 2-D
BIT 21 -
TMS370C010 BT 2! [38 SEGMENT o6
BIT 19 gg SEGMENT 3-A
vee BIT 18 31 SEGMENT 3-B
BIT 17 SEGMENT 3-C
BIT 16 30 SEGMENT 3-D
4.7 k0 BIT 15 |-t SEGMENT 3-E
sW1 BIT 14 M2 SEGMENT 3-F
s1s BIT 13 |2 SEGMENT 3-G
BT 12 32 SEGMENT 4-A
DIM/BRIGHT TOGGLE BT 11 12 SEGMENT 4.8
BIT 10 g; SEGMENT 4-C
BIT9 SEGMENT 4-D
BIT 8 }28 SEGMENT 4-E
gir 7 H8 SEGMENT 4-F
BIT 6 2 SEGMENT 4-G

Figure 4-1. Vacuum Flourescent Interface Example

In this example, the display is puilsed periodically to adjust the intensity and
update the display. In addition, the display may be put into a dim mode by

toggling the T1 IC/CR pin.

The Timer 1 PWM pin is used to control the

brightness of the display by pulsing the blanking input of the TMS0170. The
data are latched into the TMS0170 by pulsing the T1EVT pin which is con-
figured as an output. When the new data value is to be displayed it is shifted
out of the SPI.

4-3

SPl Module Specific Applications

The display update routine is controlled by Timer 1 interrupts. The Compare
1 and Compare 2 registers are set to control the refresh rate and intensity, re-
spectively. Because the display is pulsed more frequently than new values are
calculated, an interval counter is used to specify when it is time to update the
display value. In this example, the following parameters are used:

Refreshes/sec = 100 (Will eliminate flicker in display)
Display updates/sec = 2

CLKIN Freq. = 20 MHz

prescale divide = 16

normal display intensity = 90%

dim display intensity = 40%

The Timer 1 compare register values are found from the formulas:

CLKIN Freq.

Compare 1 value =
4 x refreshes/sec x prescale divide

20,000,000
= 3125 or 0C35h

1]

Compare 1 value —
4 x 100 x 16

Compare 2 value = intensity x compare 1 value
Compare 2 value (bright) = 0.9 x 31256 = 2812 or OAFCh
Compare 2 value (dim) = 0.4 x 3125 = 1250 or 04E2h

By XORing the bright and dim values together, we get the logical “difference”
between the two values. XORing the "difference” with either the bright or dim
values will give the other. This is an easy and quick way to toggle the
brightness.

DIFFMSB = Compare 2 value (dim) MSB XOR Compare 2 value (bright) MSB
DIFFLSB = Compare 2 value (dim) LSB XOR Compare 2 value (bright) LSB

The interval counter value is found from the following formula:

refreshes/sec
interval =

updates/sec
interval = 100 / 2 = 50 or 32h

SPI Module Specific Applications

The source code for this application is as follows:

.title

"Display Driver"

; This routine will use the SPI and timer 1 modules to output values

; to a serial display.

The display is updated every 0.5 seconds.

; display intensity is changed by toggling T1IC/CR pin.

;SPI register assignments.

;Timer 1 register assignments.

3 Allocate register space for the registers used in the application

SPICCR .equ PO30
SPICTL .equ PO31
SPIDAT .equ PO039
SPIBUF .equ PO037
SPIPC1 .equ PO3D
SPIPC2 .equ PO3E
TICNTRMSB .equ P040
T1CMSBLSB .equ P041
T1CMSB .equ P042
T1CLSB .equ P043
T1CCMSB .equ P044
T1CCLSB .equ P045
T1CTL1 .equ P049
T1CTL2 .equ P04A
T1CTL3 .equ PO4B
T1CTL4 .equ P04C
T1PC1l .equ PO04D
T1PC2 .equ PO4E
T1PRI .equ PO4F
; routine.
DISPMSB .equ RS
DISPLSB .equ R6
ICOUNT .equ R7
DCOUNT .equ RS
DIGITO .equ RI10
DIGIT1 .equ R11l
DIGIT2 .equ R12
DIGIT3 .equ R13
TEMPMSB .equ R14
TEMPLSB .equ R15
DUMMY .equ R16
; Assign

TIMER .equ 3125
BRIGHT .equ TIMER*9/10
DIFF .equ

INTERVAL .equ 50

.text 07000h

START DINT

; SPI Initialization

MOV

MOV
MOV
MOV

Set
MOV
MOV
MOV
MOV
MOV

#0E6h,SPICCR

#006h,SPICTL
#002h,SPIPC1
#020h,SPIPC2

delays for brightness,
#HI (TIMER) ,T1CMSB
#HI(TIMER),T1CLSB
#HI (BRIGHT) ,T1CCMSB
#LO(BRIGHT) ,T1CCLSB

#INTERVAL, ICOUNT

;High byte of display value.
;Low byte of display value.
;Time between display refreshes.

;BCD values of display digits

values for display intensity, and refresh period.

;100 interrupts/sec @ 20 MHz.
;Max intensity = 90 .

BRIGHT A' (TIMER*4/10) ;Min intensity = 40

;Disable all interrupts.

Reset SPI data out on falling SPICLK,

i 7-bit characters.

;Master ,Enable TALK, Disable SPI INT.
;Enable SPICLK out.

;Set SPISIMO out.

and value updates

;Load Compare 1 register with delay.
; Time between refreshes (10 mS).
;Set display to Bright intensity.

;Temp register for interval counter.

4-5

SPI Module Specific Applications

; Timer 1 Initialization

MOV #001h,T1PC1l ;Set T1EVT as general I/O.

MOV #062h,T1PC2 ;Set T1IC/CR to input.

MOV #040h, T1PRI ;Set Tl interrupts to low priority.
MOV #071h,T1CTL4 ;Dual-compare,Disable interrupts.

MOV #005h,T1CTL1 ;System clock / 16.

MOV #000h, T1CTL3 ;Disable T1 interrupts, clear flags.
MOV #001h,T1CTL2 ;Disable Overflow interrupts,Reset T1.

Enable Timerl & SPI

MOV #005h, T1CTL3 ;Enable T1EDGE INT, Enable T1C1l INT.
MOV #066h,SPICCR ;Release SPI
MOV #0FOh,B ;Move stack pointer value to B.
LDSP ;Set stack Pointer.
EINT ;Global interrupt enable.
MAIN ;Main Loop
; Place major portion of code here. This part of the program should
i calculate the value to be displayed, scale it from 0 to 9999, and
H store the result in DISPMSB and DISPLSB. When Timer 1 counts down
; the interrupt will be called and the program will jump to DISPLAY.
MOV #??,DISPMSB ;Move sample value into memory.
MOV #??,DISPLSB ;
JMP MAIN
i Timerl Interrupt Routine.
; This routine pulls the value to be displayed from DISPMSB and
H DISPLSB, converts it to a packed 4 nibble BCD number and shifts
H the result out through the SPI. The routine checks to see whether
; the routine was called by the timer or the T1Cl pin and clears
i the appropriate flag. DISPMSB and DISPLSB are temporary registers
; and will not contain their original values upon completion of the
; interrupt routine.
DISPLAY
BTJZ #080h,T1CTL3,TIMERINT;Was interrupt from T1IC/CR Pin?
i T1IC/CR Pin called interrupt, toggle the intensity bright/dim.
MOV #003h,T1CTL1 ;Stop timer.
MOV #001h,T1CTL2 ;Reset timer (Tl SW RESET).
MOV #050h,T1PC2 ;Set PWM as general purpose I/0.
MOV #050h,T1PC2 ;Set T1PWM=1 (command must be repeated).
MOV #060h,T1PC2 ;Reenable T1PWM.
MOV T1CCLSB,TEMPLSB ;Get current display intensity.
MOV T1CCMSB, TEMPMSB ;
XOR #LO(DIFF),TEMPLSB ;Toggle display intensity.
XOR #HI(DIFF),TEMPMSB ;
MOV TEMPMSB,T1CCMSB ;Update display intensity
MOV TEMPLSB,T1CCLSB ;
MOV #005h,T1CTL1 ;Restart timer.
AND #07Fh,T1CTL3 ;Clear T1IC/CR interrupt flag.
JMP DONE ;End of display toggle: wait for update.
TIMERINT DJNZ ICOUNT,NOTNOW ;Is it time for new value to be displayed?
; if it is not, do not calc new value.
MOV #INTERVAL, ICOUNT ;Restore interval counter

4-6

SPI Module Specific Applications

Hex to BCD Conversion Routine.

~

CLR DIGIT2 ;Clear result registers.
CLR DIGITO ;"
MOV #16,R3 ;Set loop count.
LOOP RLC DISPLSB ;Shift high bit out.
RLC DISPMSB ;Carry contains the high bit.
DAC DIGITO,DIGITO ;Double the number then add high bit.
DAC DIGIT2,DIGIT2 i "
DJNZ R3,LOOP ;Loop until multiplied 16 times.
MOV DIGITO,DIGIT1 ;Save second digit
MOV DIGIT2,DIGIT3 ;Save third digit
SWAP DIGIT1 ;Swap BCD nibbles
SWAP DIGIT3 ;Swap BCD nibbles
AND #OFh,DIGITO ;Clear high nibble
AND #OFh,DIGIT1 ;Clear high nibble
AND #OFh,DIGIT2 ;Clear high nibble
AND #OFh,DIGIT3 ;Clear high nibble

Output Display Values.

This part actually outputs the BCD values to the display through the
SPI. Note that in this example the display is limited to 4
characters, which gives a maximum value of 9999.

MOV #000h, DCOUNT ;Set counter for data address.
NEXTCHAR MOV DCOUNT,B ;Store DCOUNT in temp register.

MOV DIGITO(B),A ;Move BCD value of current char into A.

XCHB A ;Move BCD value into B.

MOV TABLE(B),A ;Look up 7seg value and store in A.

MOV A,SPIDAT ;Move character byte into SPIDAT register.
WAIT1 BTJZ #040h,SPICTL,WAIT1 ;Wait for character to be sent.

MOV SPIBUF,DUMMY ;Dummy read to clear SPI INT flag.

INC DCOUNT ;Location of next digit register

BTJZ #004h,DCOUNT,NEXTCHAR;If <4 characters sent, then send another.

MOV #005h,T1PC1l ;Toggle T1EVT to latch data.

MOV #001h,T1PC1l ;Pull T1EVT low again.

OR #001h,T1CTL4 ;Re-enable T1IC/CR interrupt here. This

; allows delay between recognition of dim/
; bright toggles to debounce switch.

NOTNOW AND #ODFh,T1CTL3 ;Clear T1C1l interrupt flag.

DONE RTI ;Return from interrupt.

; Look-up table for converting BCD values to 7-segment display values.
; Display BCD Value

TABLE .byte #07Eh
.byte #00Ch
.byte #0B6h The segments are decoded as follows:
.byte #09Eh SEGMENT | gf edcbal
.byte #0CCh BIT|76543210

.byte #0DAh
.byte #OFAh
.byte #00Eh
.byte #OFEh
.byte #OCEh

WOV DBWN O

; Set up interrupt vector addresses

.sect "Vectors",07FF4h

.word DISPLAY ;Timer 1 interrupt

.word START ;All other vectors go to 'START'.
.word START

.word START

.word START

.word START

4-7

SPI Module Specific Applications

4.2 Bootstrap Loader

4.2.1 Reprogram Data or Program Memory through SPI Port

The SPI is very useful as a bootstrap loader for loading program or data in-
formation directly into RAM, EPROM, or EEPROM. The TMS370 family SPI
and instruction set provide a fast, efficient way of moving serial data directly
into memory. With the addition of a small interrupt service routine, the mem-
ory loader can become a bootstrap loader to reprogram a device in-socket, in
the field. The interrupt routine must do the following:

I CALL INTx I
i | INITIALIZE SPI I

[SET COUNTER TO START OF BLOCKJ

| WAIT FOR CHAR. [*—

MOVE CHARACTER TO
BLOCK START + COUNTER

| COUNTER = COUNTER + 1]

END

DATA

Y

BRANCH TO START OF BLOCK
_START EXECUTION

Figure 4-2. Flowchart of Bootstrap Loader Interrupt Service Routine

The interrupt routine loads the received data into program memory beginning
at a specified location. After the data has been loaded in, the Program Counter
is set to the beginning of the block and program execution is transferred to the
new program. The new program can reconfigure the part as desired, or modify
the program or data memory. An example of this is provided in the TMS370
family EEPROM Applications Report.

4-8

SPI Module Specific Applications

4.3 DSP Controller

4.3.1

Interface TMS370 SPI to TMS320C25 DSP

This example shows how the SPI| can be used to communicate with other
microprocessors. The exact method of communication varies from system to
system, but the key parts can be shown to demonstrate how to interface the
TMS320C25 and TMS370 serial ports. The TMS320C25 has a serial port si-
milar to the TMS370, but with additional clocking and synchronization pins.

The C25’s Serial Port’s circuitry contains double buffering of both the transmit
and receive registers. The C25 can transmit data in either 8-bit or 16-bit
blocks. There are also two modes of transmission, with or without frame syn-
chronization pulses (FSX/FSR). These serial ports (C25) are fully static, e.g.,
the data contained is not lost, and to transmit/receive data CLKX/CLKR must
be present.

(For a complete description of the TMS320C25, see the TMS320C25 User's
Guide.) An example of a typical interconnection using a TMS370C010 is
shown below.

TMS320C25 % TMS370C010
22 14
INT2 F££ a0
px P2 25! spisomi
DR g‘; g: SPISIMO
SPICLK
CLKX 29_3
CLKR J56 4 18
XF 53 INT3
FSX
FSX [75—]

Figure 4-3. TMS370C010 - TMS320C25 Interface Example

In the setup shown below, data to and from both devices is clocked using the
SPICLK. The TMS370 is configured so that receipt of an INT3 signal causes
the TMS370 to load the SPIDAT register to start the SPICLK. If the
TMS320C25 wants to initiate the conversation, it pulls INT3 low, waits for
SPIDAT and is clocked out by the SPICLK. If the TMS370 wants to transmit,
it sends out a logic 0 on AQ, which is tied to INT2 on the TMS320C25. The
TMS320C25 then loads the transmit buffer (DXR) to set up the synchroniza-
tion circuitry(FSX/FSR). This in turn will cause the TMS320C25 to bring XF
low, which activates the TMS370 INT3 routine to start the transfer. The
seemingly complicated handshaking is necessary because both the
TMS320C25 and the TMS370 want to be in control of the transmission. The
TMS320C25 needs to generate its FSX/FSR pulse before data transmission,
so it has to know when a data transfer is going to happen. By using the in-
terrupt scheme to control the transmission, a data transfer will not start until
both devices are ready. The following procedures summarize the actions re-
quired when either device wants to transmit:

4-9

SPI Module Specific Applications

) TMS320C25 wants to transmit:

C25 loads DXR

C25 toggles XF low
TMS370 executes INT3 routine

° TMS370 wants to transmit:

TMS370 sets SPEAK370 bit
TMS370 toggles AO low
C25 loads DXR

C25 toggles XF low
TMS370 executes INT3 routine
C25 clears INT2 Flag

e TMS370 INT3 routine

If first time to transmit/receive
TMS370 transmits 1 character
TMS370 transmits 8 characters

If SPEAK370=0
TMS370 clears INT3 flag
TMS370 clears SPEAK370 flag

Places data to be transmitted in
buffer.
Generates TMS370 INT3.

TMS370 is initiating the transmission.
Generates TMS320 INT2.

Places data to be transmitted in
buffer.

Generates TMS370 INT3.

C25 did not initiate transmission.

Cause TMS320C25 to generate
synchronization pulse (FSX/FSR).
TMS370 shifts out 8 characters

to TMS320

TMS320 shifts out 8 characters

to TMS370

TMS320C25 initiated transmission,
Ready for next transmission.
Default TMS320 transmitting

Figure 4-4 shows the timing diagram of the Continuous mode of 8-bit data

transmission.

FSX/FSR I

4

l
!
I
sprxo < O#f] 370 Data X brte 1)4 370 DATA TX BYTE2___)»—H-(___'370 DATA TX BYTE 3
[
}

>4
c250R—4| ‘370 Data TXbvte 1 »—4< ‘370 DATATXBYTE2 _ »—#<__ '370 DATATXBYTE3)»—¥
|7
e
€25 DX —-45-4'(E25 DX BUFFER CONTENTS)i C25DXRDATA1 »—#< C26DXRDATA2)—4

sptrxD ~ -4} UNKNOWN DATA FROM BUFFER)-4—

‘370 DATA RX BYTE 1

H— 370 DATARXBYTE2 _)-H

Figure 4-4. Continuous Mode No Frame Synchronization Pulse

Due to the double buffering of the transmitter, the TMS370 must also clock
the C25 for one byte (word) of data to clear the buffer register, and then an-

SPI Module Specific Applications

;
i

i
;

SP1CCR
SPICTL
SPIBUF
SPIDAT
SPIPC1’
SPIPC2
SPIPRI
ADATA
ADIR

INT1

INT2
INT3

COM370
SPEAK370
FIRSTX
DATAIN
DATAQUT

START

other clocking sequence to receive the data. Therefore the C25 data is always
received by the TMS370 one character after being loaded into the C25 DXR.

Different protocols can have different benefits, and which is used depends on
the requirements of the system. If the system requires continual transmission
of data from the C25 then the No Frame Synchronization Mode (No FSX/FSR
pulse) allows greater through-put as well as less system overhead on the
TMS370 processor.

If the system only has periodic data transmission of data between the two
processors, and the data needs to be transmitted immediately, then the
TMS370 needs to give 16 SPICLK cycles for the data from C25 to be received
by the TMS370 sooner. The first byte from the C25 is dummy data. This pro-
cedure is not as efficient as the previous method, but for single bytes being
transmitted between long intervals the data is transferred quicker. This is due
to the TMS370 not having to wait for the C25 to load the next byte of transmit
data into the buffer for transmission.

Both processors’ flexible modes of transmission (such as C25's ability to
transmit in either 8-bit or 16-bit mode) allows customization to the parameters
of the desired system. The routines shown do not incorporate any checks if
both the C25 routine and TMS370 routine try to communica te at the same
time. If a situation like this occurred, both processors would think that they
initiated the communication and would ignore the received data. If your sys-
tem has the possibility of these asynchronous communications occurring at

the same time, then a proper protocol needs to be defined.

The source code for the TMS370 in this application is as follows:

.title "TMS370 - TMS320C25 Interface Continuous Mode"
This is the framework of source code for an interface between a
TMS370 microcontroller and a TMS320C25 DSP. The external
interrupts on both devices are used to synchronize the data transfer.

Set up equate table for Peripheral File registers used in the routine.

.equ PO30 ;SPI register assignments.
.equ P031
.equ P037
.equ P039
.equ PO3D
.equ PO3E
.equ PO3F
.equ P022
.equ P023
.equ PO17
.equ PO18
.equ P0O19

Allocate register space for communications flags and data registers.

.equ R4 ;Status register for TMS320-TMS370 comm.
.dbit 0,COM370 ;=1 if TMS370 is transmitting
.dbit 7,COM370 ;=1 C25 in continuous mode, need to
; generate first sync pulse.
.equ R5 ;Received data.
.equ R6 ;Data to be transmitted.

.text 07000H
DINT ;Disable all interrupts.
MOV #100,B ;SET STACK POINTER TO R100

4-11

SPI Module Specific Applications

LDSP

Initialize SPI,

APORT,

and

communication status flag.

MOV #087h,SPICCR ;Reset SPI,data out on rising SPICLK,
; 8-bit characters.

MOV #006h,SPICTL ;Master ,Enable TALK, Disable SPI INT.

MoV #002h,SPIPC1 ;Enable SPICLK out.

MOV #022h,SPIPC2 ;Set SPISIMO & SPISOMI out.

MOV #020h,SPIPRI ;ENABLE EMULATOR SUSPEND

MOV #007h,SPICCR ;Reset SPI,data out on rising SPICLK,
; 8-bit characters.

MOV #001h,ADIR ;Set A0 as output.

MOV #001h,ADATA ;Set A0 high.

MOV #01H,INT1 ;Initialize interrupt 1

MOV #01H, INT2 ;Initialize interrupt 2

MOV #01H,INT3 ;Initialize interrupt 3

SBITO SPEAK370 ;Default is TMS370 not speaking.

SBIT1 FIRSTX ;Initialized as first Transmission

MOV #00H, DATAOUT ;Initialize the data out register.

EINT ;Enable Interrupts

it will

When TMS370 is ready to transmit,
call subroutine TRANSMIT. This will cause an interrupt in the TMS320
which will in turn activate INT1 in the TMS370. When the TMS320 wants
to initiate a transfer it will generate an INT1 interrupt, causing the
part to execute the INT1 service routine which will prepare it to
initiate a transfer. Since both transmissions by the TMS320 and

Place main program here.

TMS370 involve calling the TMS370 INT1l routine, the SPEAK370

set by the TMS370 when it initiates a transfer.
DATAQUT and received data

transmittead
stored 1n DATAQOULT and receivec < ’

transmitted 1s

ig stored in

will be stored in DATAIN.

bit is
be

vali
vaiigc,

The data to
if it

it is

MAIN .
i
; 370 Initiates the data transfer to the C25, set appropriate Flags.
TRANSMIT SBIT1 SPEAK370 ;TMS370 is initiating transfer.
AND #0OFEh,ADATA ;Write O to A0, trigger INT1 in TMS320.
OR #001h,ADATA ;Release TMS320 INTI.
RTS ;Return from subroutine (after INT1 call)
5 Interrupt 3 service routine. This routine is called when the
H TMS370 is going to transmit or receive data.
; Do frame sync once (FIRSTX).
INTR3 JBITO FIRSTX,DATA ;If NOT the first Transmission goto DATA
SBITO FIRSTX ;Clear FLAG FIRSTX, this is first time
MOV #080h,SPICCR ;Set Character size=1 bit
MOV #000h,SPICCR ;Reset SPI,data out on rising SPICLK,
MOV #000h, SPIDAT ;Transmit dummy pulse to make TMS320
;generate FSX/FSR sync pulse.
WAIT1 BTJZ #040h,SPICTL,WAIT1 ;Wait until character has been sent.
MOV SPIBUF,DATAIN ;Clear SPI Flag
MOV #087h,SPICCR ;RESET SPI, Character size=8 bit
MOV #007h,SPICCR ;Enable SPI, Character size=8 bit
DATA MOV DATAOUT, SPIDAT ;Transmit data to TMS320. If SPEAK370=0,
; this may be dummy data.
WAIT2 BTJZ #040h,SPICTL,WAIT2 ;Wait until character has been sent.
JBIT1 SPEAK370,DONE ;If TMS370 is talking, do not save data.
MOV SPIBUF,DATAIN ;Save received data, Clear SPI Flag
DONE AND #07Fh, INT3 ;Clear INT1 flag.
SBITO SPEAK370 ;Clear TMS370 transmission flag.
RTI ;End of INT3 routine.
INTR2 Ce. ;Interrupt 2 routine
MOV #01H, INT2 ;Clear and enable interrupt 2 Flag

SPiI Module Specific Applications

INTR1

* ¥ ¥ *

DRR:
DXR:
IMR:
DATA:
*

START:

* % % F % F ¥ * N %

>
2
=
=]

RTI

MOV #01H,INT1
RTI

Set up interrupt vector addresses.

.sect "Vectors", 07FF4H

.word START ;Vector goes to
.word START ;Vector goes to
.word INTR3 ; INT3 vector.
.word INTR2 ; INT2 vector.
.word INTR1 ;INT1 vector.
.word START ;Reset vector.

The source code for the TMS370C25 in this application is as follows:

;Interrupt 1 routine
;Clear and enable interrupt 1 Flag

'START' .
'START' .

sample program for interfacing the TMS370C10 and

the TMS320C25 serial ports.

.equ 0 ;
.equ 1 ;
.equ 4 ;
.equ 96 ;

.sect "AORGO"

B START ; power-up reset

.sect "AORG1l"
B

INT2 ; interrupt 2 service routine

.sect '"AORG2"

B RXINT ; serial port receiver interrupt

.sect "AORG3"
.equ $
DINT

LDPK 0 ;
FORT 1 H
LALK Offcdh :
SACL IMR ;
STXM ;
RFSM ;
ZAC ;
SACL DRR ;
SACL DXR ;
EINT

Main body of program goes here.

serial port receive
serial port transmit register
interrupt mask register
general purpose register

disable interrupts

point to page 0O

set serial port to 8-bit mode
enable interrupt 2

FSX is output
continuos mode

zero the accumulator
initialize receive
initialize transmit register

register

register

To initiate data transfer to the TMS370

CALL subroutine XMIT. Doing this tells the 370 to start clocking, and

the 320 knowns not to save the received data.

When subroutine INT2 is

entered the 320 again tells the 370 to start clocking the serial port

and the 320 knows that it needs to save the data it receives.
lets the processor know when the when data has been receive.

LAC DXR ;
CALL XMTISR ;
EINT ;
IDLE H
RET ; data.

enable interrupts
wait for received data,

load data for transmission
initiate data transfer to 370

do not save received

4-13

SPI Module Specific Applications

INT2:

RXISR:

*

XMTISR:

.equ
RPTK
NOP
CALL
LALK
SACL
EINT
IDLE
LAC
ANDK
SACL
RET

.equ
EINT
RET

.equ
RXF
NOP
NOP
NOP
SXF
RET

$
40

XMTISR
0ffd4h
IMR

DRR
Offh
DATA

give 370 enough time to detect
the XF generated interrupt. Then
initiate data transfer to 370

enable int2, rxint

enable interrupts

wait for received data

load accumulator with Data Receive Register.
save only lower 8 bits

store received data

Serial receive interrupt
enable interrupts

initiate data transfer to 370 routine.
toggle XF flag low, causes 370 interrupt

and then high, to clear. only want 370 INT3
routine to execute once.

Section b

SCI Module Description

5-1

SCI Module Description

5.1 The SCI - How It Works

The SCI module is a high-speed serial |/O port that permits Asynchronous or
Isosynchronous communication between the TMS370 and other peripheral
devices such as keyboards, display terminal drivers, and RS-232 interfaces.
The SCI transmit and receive registers are double-buffered to prevent data
collisions. In addition, the TMS370 SCI is a full duplex interface, allowing for
simultaneous transmission and reception of data. Parity checking is done with
on-chip hardware, eliminating the need for software overhead. The SCl is
designed with the ability to do data formatting and integrity checking in
hardware, further increasing execution speed.

The SCI module contains 4 major blocks as shown below: an 8-bit receiver
and associated interrupt hardware, an 8-bit transmitter with its interrupt

hardware, a programmable clock for setting the baud rate, and
frame/format/parity error circuitry.

I'"'_"___so_r—_iﬁ_________is _______________________ K
: | [xwake] [TxBUFREG | I
: F%RRA';‘ET { SCI TX INT 40| TXPRI o Lo INT=

AND MODE || TXRDY % |
| = 1
| I INT ENA ol LeveL 2 INT!
| I 54.7 5F.6 |
| ! 54.6 {
[PARITY I TX EMPTY |
: EVEN/ODD]ENA | | i
508 505	511
I [wuT] [TXSHFREG	oG > scmxp PN
	TX ENA
514 »Z3 SCICLK P	N1
l gyg _S3	LSB gayp ' [
¢l —™ R’x%_: L o4	
52	MsB 16 BITS
S {	

SCIRXD SCI RX INT RXPR1

{ pIN (>—————{ __ RXSHF REG 55.6 55.0 o0 LEvEL 1INTI
| »+—{ RXRDY ot —0"] :
| 55.1 INT ENA S5 o LEVEL 2 INT|
o [RXWAKE |—- '
! RXWAKE 555 !
! BRKDT |- i
| RX ERROR
! }
: ERRI FE ! OE I PE | [RxBUF REG] [
| 55.7 55.4 553 55.2 57 |

5-2

Figure 5-1. SCI Block Diagram

SCl Module Description

5.2 Choosing SCI Protocols and Formats

Data formatting is a characteristic of the SCI that sets it off from standard serial
communications interfaces such as shift-registers. The basic unit of data is
called a character and is 1 to 8 bits in length. Each character of data is for-
matted with a start bit, 1 or 2 stop bits, and optional parity and address bits.
A character of data along with its formatting information is called a frame.
Frames are organized into groups called blocks. A block of data usually begins
with an address frame which specifies the destination of the data as deter-
mined by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the be-
ginning of a frame. The SCI| uses an NRZ (Non-Return-to-Zero) format,
which means that in an inactive state the SCIRX and SCITX lines will be held
high. Peripherals are expected to pull the SCIRX and SCITX lines to a high
level when they are not receiving or transmitting on their respective lines.

The different SCI data framing formats are shown in Figure 5-2.

lstart{ 18 | 2 [3 [4 [s]| 6 [7 |wmss |parmy|stor!

IDLE LINE MODE
(NORMAL NON-MULTIPROCESSOR COMMUNICATIONS)

START| LSB | 2 3 4 5 6 7 | msB |ADPR/[oariry] sTOP |
DATA

ADDRESS BIT MODE

Figure 5-2. SCI Data Frame Formats

With the exception of the start bit and NRZ formatting, all the elements men-
tioned above are user programmable. These are controlled by the SCI Com-
munication Control Register (SCICCR). The SCI Control registers are shown
in Appendix B.

1) Protocols: The TMS370 SCI supports two protocols, the Idle Line and
Address Bit modes. The two formats differ in how they distinguish the
beginning of a block. The Address Bit mode adds an extra bit to each
frame of transmitted data. Setting this bit to a logic 1 means that the
current frame is an address. In the Idle line mode, an address frame is
the first frame following an idle period of ten bits or more. The protocol
is selected with the ADDRESS/IDLE WUP (SCICCR.3) bit.

2) Character Length: The length of the character to be transmitted is
programmable from 1 to 8 bits. Data loaded into TXBUF is automat-
ically right-justified (normal byte format) for transmission. When re-
ceiving data in RXBUF the data is also right-justified. Data are
transmitted and received LSb first. If the character length is less than 8
bits the data value is automatically buffered by leading Os. Character
length is set by programming the SCI CHAR (SCICCR.0-2) bits to the
values shown in Table 5-1.

5-3

SC! Module Description

Table 5-1. Transmitter Character Bit Length

SCi SCi SCl Character
Char2 Char1 Char0 Length
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

3) Parity: Parity is a method of checking the integrity of a
transmitted/received character. It sends an extra bit with the character
to make sure that the sum of 1s in the character is an odd or even num-
ber. Parity checking and generation is done on-chip in hardware. It may
be enabled or disabled, and if used it can be set odd or even. Bits 5 and
6 of the SCICCR register control the parity checking.

4) Stop bits: A stop bit is a high bit of data transmitted at the end of a
frame. The number of stop bits can be one or two, depending on your
application. In general, data integrity is more secure if two bits are used
because the SCI is more likely to catch a framing (SCI synchronization)
error. Adding the extra bit increases the number of bits transmitted per
character, however, and slows the throughput of the serial port.

5.3 The SCI SW RESET Bit

The SCI SW RESET Bit (SCICTL.5) is used to reset the condition of the SCI
state machine and operating flags. Writing a 0 to this bit sets the operating
flags to their reset state and halts the operation of the SCI. This must be done
before using the SCI for the first time or after a system RESET to guarantee the
state of the SCI. Writing a 1 to the bit releases the SCI state machine and al-
lows the SCI to resume operation.

It is good practice to reset the SCI by writing a O to the SCI SW RESET bit
before setting up the control registers. The registers are then set to the desired
value and a 1 is written to the SCI SW RESET Bit to release the SCI. This
stops the operation of the SCI while it is being configured initially. The
SCICTL control register values can be set in the same instruction that sets the
SCI SW RESET bitto 1.

SCI Module Description

5.4 Operating Modes of the SCI

FALLING
EDGE
DETECTED

SCI CLK

2

The SCI has two modes of operation. The first, Asynchronous, is the most
commonly used mode and requires no synchronizing clock between the
TMS370 and a peripheral device. When transmitting in the Asynchronous
mode, each bit is held for 16 shift-clock cycles. This repetition insures that the
data will be present long enough for the unsynchronized receiver to get valid
data.

In the Isosynchronous mode, a common clock is used to increase system
throughput by synchronizing the data transfer between the TMS370 and an-
other serial port. In this mode, one bit of the frame is shifted out on every
shift-clock cycle. Using the Isosynchronous mode gives a data transfer rate
16 times the corresponding Asynchronous SCICLK rate, but requires an extra
line to carry the SCICLK signal. The Isosynchronous mode is superior to sim-
pler synchronous communications such as the SPI in that you can achieve
near synchronous communication speeds but still use formatting to assure
data integrity. The format for Asynchronous and Isosynchronous communi-
cations is shown in Figures 5-3 and 5-4.

\ 7 \ ’
MAJORITY MAJORITY
VOTE VOTE

34 5 6 7 8 910111213 141516 1 2 3 4 56 6 7 8 9 10 11 1213 14 15 16 1

RR) [b X

START BIT LS BIT OF DATA

Figure 5-3. Asynchronous Communication Format

SCICLK
TXD BiT.ouT X BIT OUT X 8IT OUT X

RXD

\V;
&

QAXXXXXXXXX)

OO0 _ OO OO
0909099999 BIT IN 0‘0 0’0’0’0.0.0‘0.0’0.0.0 BIT IN ’&é’t’:’t‘:’t‘:’

AAAANANNANANANNN

Figure 5-4. Isosynchronous Communication Format

5-5

SCi Module Description

5.5 Setting the SCICLK Pins and Baud Rate

The SCICLK is usually configured internally for Asynchronous communi-
cations, but can be external if your application requires it. For Isosynchronous
communications the clock can be configured internally or externally depend-
ing on whether the TMS370 will be issuing the clock signal. If the SCICLK
pin is not configured as the serial clock(SCICLK FUNCTION=0), then the pin
may be used for general purpose |/O by setting SCICLK DATA
DIR(SCIPC1.0) to the appropriate value and reading or writing to SCICLK
DATA IN or DATA OUT. When the SCICLK is enabled (SCICLK
FUNCTION=1), the contents of SCICLK DATA DIR, DATA IN, and DATA
OUT are ignored.

"

Even though the clock is configured internally and is “independent” in the
Asynchronous mode, it is necessary to have the baud rates set to exactly the
same value in the transmitting and receiving devices so that the receivers can
synchronize correctly on the frames. This holds whether communications are
between two TMS370’s or a TMS370 and a different peripheral device. The
baud rate is set by writing a 16-bit value to the Baud Rate Select registers,
BAUDMSB and BAUDLSB. The equations used to calculate the baud rate
register values are shown below:

Asynchronous Baud Rate = CLKIN /[(BAUD RATE REG + 1) x 128]

Isosynchronous Baud Rate = CLKIN / [(BAUD RATEREG + 1) x 8]

Table 5-2 gives the Baud Rate Register values for common Asynchronous
baud rates and frequencies. The values for Isosynchronous baud rates can be
similarly calculated.

Table 5-2. Asynchronous Baud Rate Register Values for Common SCI Baud

Rates
Crystal Oscillator Frequency (MHz)
2.4576 7.3728 19.6608 20.00
Baud Rate |BR Reg|%ERR |BR Reg| %ERR |BR Reg|%ERR |BR Reg| %ERR
75 255 0.c0 767 0.00 2047 0.00 2082 0.02
300 63 0.00 191 0.00 511 0.00 520 -0.03
600 31 0.00 95 0.00 255 0.00 259 0.16
1200 15 0.00 47 0.00 127 0.00 129 0.16
2400 7 0.00 23 0.00 63 0.00 64 0.16
4800 3 0.00 11 0.00 31 0.00 32 -1.38
9600 1 0.00 5 0.00 15 0.00 15 1.73
19200 0 0.00 2 0.00 7 0.00 7 1.73
38400 - - - - 3 0.00 3 1.73
156000 - - - - - - 0 0.16

BR Reg = 16 bit Baud rate register value

SCI Module Description

Note: When using an externally generated SCICLK in Isosynchronous
mode, the maximum speed at which the SCICLK can run is limited to
CLKIN/40. This is necessary so that the internal clocks of the SCI have
time to synchronize with the external clock. For this reason it is recom-
mended to use the TMS370 to drive the master serial clock in a system
where maximum throughput is a major concern.

5.6 SCI Receiver Operation

A flowchart showing the operation of the receiver is shown in Figure 5-5.
When the SC! senses a falling edge on SCIRXD the flow described below
begins. Depending on the protocol and format, the receiver checks for tran-
smission errors and loads the data into RXSHF, the receiver shift register.
When the number of bits specified by the SCI character length control bits
have been read in, the contents of RXSHF are transferred to the receiver data
buffer, RXBUF, and the RXRDY flag is set to show that the data value is ready
to be read. An SCI receiver interrupt is generated if the SCI receiver interrupt
is enabled.

If errors were detected, the RXERROR and specific error(Parity, Framing, Ov-
errun, Break) flags are set by the hardware and operation continues. Error
control is done in software. If multiprocessor communications are being used,
frames received are checked to see if they are address frames and the appro-
priate bits are set.

5-7

SCI Module Description

BEGIN SCI
RECEIVER ROUTINE

START OF FRAME?
(FALLING EDGE ON SCIRXD,
FIRST BIT =0)

[READ CHARACTER INTO RXSHF|

PARITY, OVERRUN
OR FRAMING ERRORS?

SET APPROPRIATE
FLAGS, RXERROR = 1

RXSHF—RX BUF
RXRDY =1
RXWAKE =0

ADDRESS BIT
MODE

ADDRESS BIT =1 IDLE 11 BITS

END OF ROUTINE

SHADED = SOFTWARE

Figure 5-5. Receiver Operation Flowchart

SCI Module Description

5.7 SCI Transmitter Operation

A flowchart of the operation of the SCI transmitter is shown in Figure 5-6.
The SCI transmitter is activated by loading the transmitter buffer, TXBUF,
which clears the TXRDY flag. When TXSHF, the transmitter shift register, is
empty, the contents of TXBUF are latched into TXSHF and the TXRDY flag is
set to indicate the transmitter is ready for a new character. Depending on the
protocol and format, the transmitter formats the data as needed to signal the
beginning and end of frames of data.

5-9

SCI Module Description

((_ TRANSMITTER ROUTINE)

TXBUF - TXSHF
TXWAKE - WUT
TXWAKE—WUT TXREADY =1
| DELAY > 10 FRAMES I TXBUF - TXSHF TXEMPTY =0
0—TXWAKE TXWAKE =0
IDLE FOR 10 BITS
TXENA
'
N
WUT=1
TXBUF—TXSHF v
TXWAKE—WUT
TXREADY =1 [acoRess BiT=1] | Aporess eim=o |
TXEMPTY =0

TXSHF—SCITXD
TXEMPTY =1

+N~

TXSHF —-SCITXD
TXEMPTY =1
TXWAKE =0

Y

END OF ROUTINE

‘ END OF ROUTINE '

SHADED = SOFTWARE

Figure 5-6. Transmitter Operation Flowchart

SCI Module Description

Data transmission is initiated by moving data into TXBUF. The status of the
TXWAKE flag, set prior to writing to TXBUF, determines whether or not the
current character is an address or data. The contents of TXWAKE and TXBUF
are transferred to WUT(Wake Up Temporary) and TXSHF, respectively, to be
shifted out as soon as the current transmission is complete. WUT and TXSHF
are the actual transmission buffers and cannot be written to directly, only
through TXWAKE and TXBUF. This double buffering of the transmission re-
gisters allows you to begin setting up for the transmission of a new character
before the previous character has been shifted out of TXSHF, speeding up
data transfer. Data is shifted out of TXSHF LSb first.

It should be noted that there are two ways to initiate a block signal when us-
ing the Idle Line protocol. The first is to write a 1 to the TXWAKE bit and then
write dummy data to the TXBUF register. The transmitter will idle for 10 bits,
signalling a block start. The other method is to simply wait for a period of time
greater than the transmitter takes to transmit 10 bits (this is determined from
the SCICLK frequency) and write the address to TXBUF.

5.8 SCI Interrupts and Flags

The SCI interrupt logic generates interrupt flags when it receives or transmits
a complete character as determined by the SCI character length. This provides
a convenient and efficient way of timing and controiiing the operation of the
SCI transmitter and receiver. The interrupt flags for the transmitter and re-
ceiver are TXRDY (TXCTL.7) and RXRDY (RXCTL.7), respectively. The
TXRDY flag is set when a character is transferred to TXSHF and TXBUF is
ready to receive a new character. In addition, when both the TXBUF and
TXSHF registers are empty, the TX EMPTY flag (TXCTL.6) is set. The TXRDY
flag signals that you can write another character to TXBUF, and the TX
EMPTY flag is set when no new data value has been written to TXBUF and
the SCI has finished transmitting.

When a new character has been received and shifted into RXBUF, the RXRDY
flag is set. The status of data transfers can be checked by polling the flags. In
this way the risk of a receiver overrun or transmitter corruption can be avoided.

The interrupts associated with the receiver and transmitter can be enabled or
disabled using the SCI RX INT ENA (RXCTL.0) and SCI TX INT ENA
(TXTCL.O) bits, respectively. When the interrupts are enabled and the flag is
set, that particular interrupt is asserted. The priority of the SCI RX and TX in-
terrupts can be set independently using the SCI TX and RX priority bits (SCI-
PRI.5-6). Note that unless the RXENA bit (SCICTL.0) is set, the received data
will not be shifted into RXBUF and no interrupt will be generated. Data loaded
into TXBUF will not be shifted out unless the TXENA bit is set.

SCI Module Description

5.9 Multiprocessor Communications

5.9.1 Using the SLEEP Bit

Quite often several serial ports will be tied to a common line, and a method is
needed to restrict the conversation between two devices to avoid a commu-
nications conflict. The SLEEP flag can be used to disable an SCI until the start
of a new block, at which time an address check can be made to see if that
particular receiver is being addressed. The SLEEP bit is used in both Idle and
Address Bit modes.

For the single microcontroller system SLEEP is initialized to 0. In a multi-
processor environment the SCI uses the SLEEP (SCICTL.2) flag to control
when a specific receiver is addressed. In a multiprocessor system the SLEEP"
flag is initialized to a 1. Until a Sleeping receiver receives block start signal,
the following happens:

1) SCIRX continues to load RXSHF

2) Nd format errors are recognized(OE=FE=PE=0), but BRKDT still is.
3) Data is shifted into RXBUF, but RXRDY is not set.

4) RXINT is disabled.

A block start signal acts like an alarm clock for the sleeping SCI receiver. A
block start signal signifies that the current is an address. In the Address Bit
mode, this is signalled by Address Bit=1. In the Idle mode, a block starts
when a low bit is detected after an idle period of 10 bits or more. When a
block start signal is received, the data received (an address) is loaded nor-
mally, including the RXWAKE flag. At this point the receiver interrupt will be
called if enabled and the address byte received is checked, in software, against
the "key” for that particular processor. If it matches, the software needs to
clear the SLEEP bit and return to the main loop to read the rest of the block;
if not, put the part back to bed (SLEEP=1), return to the program and wait
until another block start is detected. Clearing the SLEEP bit informs the mi-
crocontroller that the following frames are data and not addresses.

SCI Module Description

5.9.2 Using the TXWAKE Bit

The TXWAKE bit is used by the transmitter to format the data going out as an
address frame or a data frame. |f a data character is being transmitted, the
TXWAKE flag is left 0. If an address needs to be sent, TXWAKE is set to 1
before the address byte is loaded into TXBUF. The TXWAKE flag is automat-
ically cleared when the byte is shifted from TXBUF to TXSHF.

Depending on which protocol you are using (Address Bit or ldle) setting the
TXWAKE bit has different effects. If the Address Bit mode is being used, the
Address bit will be set for that frame as it is transmitted out. If the Idle bit
mode is being used, the transmitter goes idle (transmits a logic high) for a
period of 10 bits when TXBUF is loaded. This is in effect a dummy write; the
next data written to TXBUF will be the address and will be transmitted out as
the address frame. Depending on your application, it may not be necessary to
use the TXWAKE bit. If your design has only one peripheral or device tied to
the SCI, then address bytes are not needed. TXWAKE can be left O for the
duration of the transmission and no address bits will be sent.

5.9.3 Disabling the SCI Transmitter

Because the SCI uses the NRZ format, the transmitter is actually outputting a
logic 1 when data is not being transmitted. If the SCITXD line is going to be
tied to a bus it will be necessary to put the line in a three-state condition so
that the line is not constantly being driven high. This is done by reconfiguring
the SCITX pin as general I/O after transmission. Setting the SCI TXD FUNC-
TION bit = 0 and the SCI TXD DATA DIR — 0 will put the pin into an input
configuration that will prevent bus conflicts from occurring.

5.9.4 Choosing the Right Protocol

Because no idle period is needed between blocks, the Address mode is more
efficient when sending small blocks of data, typically fewer than 10 frames.
When sending larger blocks, however, it is usually more efficient to use the
Idle Line mode because the extra bit per frame used in Address Bit mode be-
comes more significant. If the receiver does not change very often, the Idle
Line mode is probably the best choice because address bytes are not sent that
often. For single-processor applications, the Idle Line mode is usually used.
The Address Bit mode, because it is formatted to accomodate addressing ea-
sily, is frequently used for multiprocessor designs.

An important consideration to take into account when using the idle line
mode is the amount of time it takes for software overhead. If the transmitter
must service a lot of code between transmissions, then there is a possibility
that the transmitter will inadvertently remain idle for ten bits or more, acci-
dentally sending a block start signal. This becomes more and more likely as the
transmitter service routines become more involved and the Baud rate in-
creases. If you are going to be using complicated transmitter routines it may
be a good idea to use the Address Bit protocol, even though the extra bit may
seem unnecessary in the short run.

The TMS370 SCI was designed for maximum compatibility with existing mi-
crocontroller protocols. For the purposes of interfacing to other microcon-

5-13

SCI Module Description

trollers, the Address-Bit mode is compatible with the 18051 protocol. The idle
Line mode is in accordance with the MC6801 protocol.

5.10 Timing the Flow of Data

5.10.1 Transmitting

A few items need to be taken into consideration when using the SCI trans-
mitter. It is important not to write data to the TXBUF register before it has
shifted its data to the TXSHF register. This becomes more likely as the SCI
Baud rate decreases and it takes longer to shift out the data. Unlike the SCI
receiver, there is no transmitter overrun flag. The programmer must guard
against this in his software.

There are two ways to make sure that characters do not get overwritten in
TXBUF. The first is to use transmitter interrupts to control the loading of
TXBUF. By setting TXINT ENA (TXCTL.0), the TX interrupt will be called
when TXRDY is set. Because TXRDY is only set (and the TX interrupt called)
when TXBUF is ready to receive a new character, there is no possibility of an
overwrite if the instruction is placed in the interrrupt routine. Also, in a large
program that transmits from many locations in its code, interrupt-driven tran-
smit routines are more memory efficient than other methods.

The second way to prevent transmitter overruns is to poll the TXRDY flag
(TXCTL.6). If using interrupt-driven routines is not practical in your applica-
tion, or the program can do nothing until the data is transmitted, it may be
more practical to load TXBUF and simply loop until the TXRDY flag is set. Use
the BTJZ instruction to loop on itself until the flag is set. Several of the ap-
plication examples shown later use this technique.

5.10.2 Receiving

5-14

By far the most important thing to remember when receiving data is to keep
your receiver routine short. If a large amount of data is being received, store
it in a table and manipulate it later. As soon as the receiver interrupt is called
move the data out of RXBUF and store it in another register. This will prevent
new data from overwriting data that is already in RXBUF and causing a re-
ceiver overrun.

SCI Module Description

5.11 Detecting Transmission Errors

The advantage of formatting data is the ability to detect communication errors
when they occur. The SCI has hardware designed features that make it easy
to detect such errors. The SClI receiver has flags to detect the following errors:

1) Parity: The parity error bit, PE (RXCTL.2), is set when the number of
1s plus the parity bit is not odd or even, depending on whether the
parity is odd or even according to the EVEN/ODD PARITY bit
(SCICCR.6). Parity checking can be disabled with the PARITY ENABLE
bit(SCICCR.5).

2) Receiver Overrun: If data is not read from RXBUF before new data is
received, the overrun error bit, OE (RXCTL.3) will be set. This signifies
that data received was lost before it could be read.

3) Framing: A framing error occurs when the receiver loses synchroniza-
tion with the transmitter. The framing error bit, FE(RXCTL.4) is set when
the receiver does not detect a stop bit (or bits) as expected at the end
of a frame.

4) Break Detect: The break detect flag, BRKDT(RXCTL.6), is set when
the receiver detects 11 continuous low bits after the FE flag is set. Be-
cause of the NRZ communications format, this signifies a serious error
in either the transmitter or the transmission line. This will cause an in-
terrupt if enabled.

5) RX ERROR: Any time any of the above flags are set, the RX ERROR flag
is set. The RX ERROR flag provides an easy and quick way to see if an
error has occurred without polling each bit.

All of the above flags are cleared by reading RXBUF, executing an SCI SW
RESET, or executing a system reset.

Of course, if data integrity is not an issue, you can ignore checking for errors.
Disabling parity decreases the number of bits sent per frame, so in effect a
faster transmission rate is achieved. In most cases, however, you will want to
make sure your data has been transmitted correctly and leave it enabled.

In addition to on-chip error checking, there are a number of coding methods
that allow faster data transfer but still insure data integrity. Encoding the data
before it is sent can speed up the transfer without sacrificing quality. Encod-
ing methods such as Cyclic Redundancy Checking (CRC) or block encoding
can be found in most good books on digital communications. The checksum
method of error checking involves checking parity on a block of data as well
as the individual characters.

SCI Module Description

5.12 What to Do with Transmission Errors

Once you get an error, what do you do? Unfortunately, with digital commu-
nications there is no easy way to correct bad data, and then it can only be
done if complicated encoding schemes are used. The simplest way to correct
the data is to have the transmitter retransmit the data. This is usually done by
reserving a special NAK(Negative AcKnowledge) character in the data to sig-
nal when an error has been detected by the receiver. When the receiver de-
tects an error, it transmits the NAK character to the other device, signaling it
to retransmit the data.

Section 6

SCI Module Software Examples

The following are examples of the various modes of operation and common
software routines used in the implementation of the SCI. The SCI Control
Registers are shown in Appendix B. The Register Equate table for the fol-
lowing examples is shown below:

Table 6-1. Common Equate Table

SCICCR
SCICTL
BAUDMSB
BAUDLSB
TXCTL
RXCTL
RXBUF
TXBUF
SCIPC1
SCIPC2
SCIPRI

.equ PO50 ;SCI Communication Control Register

.equ PO51 ;SCI Operation Control Register

.equ P052 ;Baud Rate Select MSB Register

.equ P0O53 ;Baud Rate Select LSB Register

.equ P054 ;Transmitter Interrupt Control and Status Register
.equ PO55 ;Receiver Interrupt Control and Status Register
.equ P057 ;Receiver Data Buffer Register

.equ P0O59 ;Transmit Data Buffer Register

.equ POSD ;SCI Port Control Register 1

.equ POSE ;SCI Port Control Register 2

.equ POSF ;SCI Priority Control Register

6-1

SCI Module Software Examples

6.1 SLEEP Bit - Multiprocessing Control

B1200

RXINT

AWAKE

DONE

.equ
MOV

MOV
MOV
MOV
MOV
MOV
MoV
MOV

BTJZ
XOR
JNE
MoV
MOV
JMP

PUSH
PUSH
MOV
MOV
MOV
POP
POP
DJNZ
MOV
RTI

By using the SLEEP bit (SCICTL.2), several microprocessors can be tied to
common SCIRXD and SCITXD lines. This example shows a "slave” micro-
controller set to listen for its own address and load its RAM with a block of
data of a fixed size when it is addressed. The data is received through the use
of an interrrupt routine. When the part recognizes its own address it clears the
SLEEP bit and subsequent characters are loaded into memory starting at reg-
ister DATA+BLOCKSIZE-1 and continuing down to register DATA. The

SLEEP bit is then set and the routine waits for the next address.

2082
#007h,SCICCR

#00h,SCICTL
#HI(B1200) ,BAUDMSB
#LO(B1200) ,BAUDLSB
#001h,RXCTL
#002h,SCIPC2
#060h, SCIPRI
#033h,SCICTL

#004h,SCICTL, AWAKE
#ADDRESS, RXBUF

DONE

#011h,SCICTL
#BLOCKSIZE-1,BCOUNT
DONE

B

A
BCOUNT, B
RXBUF,A
A,DATA(B)
A

B
BCOUNT, DONE
#015h,SCICTL

;1 stop bit, no parity, Isosynchronous,
; Idle line protocol, 8-bit characters.
;SCI SW RESET

;Set for 1200 BAUD @ 20 MHz.

jEnable SCIRX INT.

;Set SCIRXD as input.

;SCIRX/SCITX interrupts low priority.
;Release SCI, SLEEP=0,RXENA,TXENA.

;Main Code here.

;Receiver interrupt routine.

;If SLEEP=0, do not check address.
;Is Address mine?

;If not, go back to sleep.

;Clear SLEEP bit.

;Get size of Block(-1 for address).

;Address is mine, start reading data.
;Save contents of A & B registers.

;Put pointer and data in temp registers.

;Store character in DATAIN table.
;Restore contents of A & B register

;Wait for next character.
;Put part back to sleep
;Return from interrupt

SCI Module Software Examples

6.2 System Controller Configuration

B1200

XMIT

WAIT

.equ

MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV

CALL

MOV
MOV
MOV

BTJZ
BTJO
MOV
RTS

In this example the device is setup as a system controller that requests data
from specific devices using the Idle Line protocol. The address of the device
to be interrogated is stored in ADDROUT. The address is sent out and the
controller waits for the data to be sent to it. If an error occurs the controller
asks for the data to be transmitted again.

129

#00h,SCICTL ;SCI SW Reset.

#077h,SCICCR ;1 stop bit, even parity, Asynchronous,
; Idle line protocol, 8-bit characters.

#HI(B1200) ,BAUDMSB ;Set for 1200 BAUD.

#LO(B1200) ,BAUDLSB H

#001h,RXCTL ;Enable SCIRX INT.

#002h,SCIPC2 ;Set SCIRXD as input.

#060h, SCIPRI ;SCIRX/SCITX interrupts low priority.

#032h,SCICTL ;Internal Clock, TXENA, RXENA.

;Main Code here.
XMIT ;Call subroutine to transmit character.
;More Main Code here.

#01Ah,SCICTL ;Set TXWAKE: address transmission.
#000h, TXBUF ;Dummy write to cause SCITX idle.
ADDROUT , TXBUF ;Send Address.

#040h ,RXCTL ,WAIT ;Wait for answer.

#080h,RXCTL , XMIT ;If error occurred, retransmit.
RXBUF ,DATAIN ;Save received data.

;Return to main program block.

6-3

SCI Module Software Examples

6.3 Nine-Bit Data Protocol

Data transfer can be made more efficient by transferring more bits per charac-
ter. By using the Address bit mode, an extra bit of data can be added to each
character, creating in effect a nine-bit character protocol. Extra bits, BITNINE
for the transmitter and HIGHBIT for the receiver, are used to hold the ninth
bits and can be assigned to any unused register. The transmit and receive
routines are similar to the 8-bit character length routines with the addition of
code to monitor the ninth bit. The transmitter routine, upon finding
BITNINE=1 will set the TXWAKE bit. This will signal the transmitter that ad-
dress character is going out and to set the address bit=1. If the TXWAKE flag
is not set the address bit will remain 0. The receiver checks to see the value
of the ninth bit by polling the status of the RXWAKE flag. If it is set then the
received character is an address and the ninth bit is set; otherwise it is not an
address and the ninth bit is 0.

B1200 .equ 129
MOV #000h,SCICTL ;SCI SW Reset.
MOV #07Fh,SCICCR ;1 stop bit, even parity, Asynchronous,
; Address bit protocol, 8-bit characters.
MoV #HI(B1200) ,BAUDMSB ;Set for 1200 BAUD.
MOV #LO(B1200) ,BAUDLSB ;
MOV #001h,RXCTL ;Enable SCIRX INT.
MOV #022h,SCIPC2 :Set SCIRXD as input.
MOV #060h, SCIPRI ;SCIRX/SCITX interrupts low priority.
MOV #033h,SCICTL ;Internal Clock, TXENA, RXENA.
;Main Code here.
XMITTER ;Transmitter routine
JBITO BITNINE,BITLOW ;Check to see if ninth bit=0
MOV #03Bh,SCICTL ;Ninth bit is high, set TXWAKE flag.
BITLOW Mov DATAOUT, TXBUF ;Load data to be transmitted.
RTS ;End of subroutine. TXWAKE flag is
; cleared automatically.
RCVR ;Receiver routine.
SBIT1 HIGHBIT ;Address bit is set, ninth bit=1
BTJO #002h,RXCTL,GETCHAR ;address bit not set,
SBITO HIGHBIT ;HIGHBIT=0.
JMP GETCHAR
GETCHAR MOV RXBUF ,DATAIN ;Save other 8 bits of data. RXWAKE is
; cleared automatically.
RTS

6-4

SCI Module Software Examples

6.4 HALT Mode Wakeup Using the SCI Receiver

In many applications, power consumption is a major concern. The TMS370
has two low-power modes, HALT and STANDBY, which stop execution of
various modules in the device. This greatly reduces the power used by the
part. For a complete description of the Powerdown/Idle modes see Section
of the TMS370 Family Data Manual. While in a power-down mode the part
ignores everything but a few select interrupts. The SCIRX interrupt is recog-
nized while in the HALT mode and can be used to wake up the device upon
receipt of a falling edge on SCIRXD. In this way the part can be put into a
low-power mode and only be activated when another device wants to talk to
it. The following code shows how to put a TMS370C050 into HALT mode
to be awakened upon a SCIRX interrupt.

B1200

.equ
MOV
MOV

MOV
MoV
MOV
MoV
MOV
MOV

EINT

IDLE

RESET).

Note: You must enable interrupts before executing the IDLE instruction
or the part will not recover from the low-power mode (except on a system

129
#00h,SCICTL
#077h,SCICCR

#HI (B1200) ,BAUDMSB
#L0O(B1200) ,BAUDLSB
#001h,RXCTL
#002h,SCIPC2
#060h, SCIPRI
#031h,SCICTL
#045h, SCCR2

;
i
H
i
H
;
;
;
i
i
H
;
;
;

H
;

SCI SW Reset.

1 stop bit, even parity, Asynchronous,
Idle line protocol, 8-bit characters.

Set for 1200 BAUD.

Enable SCIRX INT.

Set SCIRXD as input.

SCIRX/SCITX interrupts low priority.
Internal Clock, RXENA.

Configure for STANDBY mode.

Interrupts must be enabled to exit
HALT mode

Go into low-power mode. Part will stay
in standby mode until a valid standby
interrupt is requested, including
SCIRX.

6-5

SCI Module Software Examples

6-6

Section 7

SCI Module Specific Applications

7-1

SCI Module Specific Applications

7.1 RS-232-C Interface

7141

7-2

Interface TMS370C050 to RS-232-C Connection

The most common of the myriad of serial interfaces is the RS-232-C. Over
time it has become an industry standard for digital communications, used for
everything from PCs to telecommunication. This example will show the soft-
ware and hardware necessary to connect a TMS370C050 to an RS-232-C
interface. External hardware is needed because RS-232-C specifications call
for non-TTL compatible voltage levels. This example uses the Maxim
MAX232 RS-232 line driver/receiver to buffer the TTL levels to the -12 V to
+12 V levels needed for RS-232 communications. The TMS370C050 will be
used as the DCE (Data Communications Equipment) end of the communi-
cations link, that is, as a "slave” to another controller. For more information
about the RS-232-C interface, consult a book on digital communications.
Several are listed in the references section.

RS-232-C specifications are vague about the exact uses and protocols asso-
ciated with the pins. This example shows a common format, using the CTS
(Clear to Send) and DTR (Data Terminal Ready) lines for handshaking. The
Transmitted Data and Received Data lines are used for the actual data trans-
mission. In this example, as in most RS-232-C communications, the tran-
smissons are asynchronous and need no synchronizing clocks. When the DTR
line is pulied high, the controiier is ready to receive data. Otherwise, the
TMS370C050 stops data transmission until the controller pulls the line high
again. The TMS370C050 can also halt data transmission from the controller
by pulling the CTS line low. The SCICLK and Analog Input 7 pins are con-
figured as general 1/0 pins for the CTS and DTR signals, respectively. The
basic configuration for an RS-232-C connection is shown in Figure 7-1.

SCI Module Specific Applications

13f\
25/ o
2]
28 5
U4
231 4
10
1 10
C1+ Vee 2: o
2 21 °
15 uF Vs —S—=
I 3 v- DTR 20] _°
c1- 7 0
V, —aQ
(13 19
2lca+ —el—°
| SG 18 o
16 uF CTS 5 a
14 17
5 T10UT .,—-——J —a—"°
jC2- T20UT b= T
R1INIg RD 3 °
AN7 423 :; TN gﬁ: 15 {15 °
SCIRXD 52 32] 72N | ™ 2l o
SCICLK |35 9] R10UT 14 o
SCITXD 75 1R20UT Vss I | B
l——— Vee & \/
TMS370C050 GND
vee MAX232 RS-232 CONNTECTOR

Figure 7-1. TMS370C050 - RS-232-C Interface Example

7-3

SCI Module Specific Applications

The framework of a program for controlling communications between the
TMS370C050 and a DTE (Data Terminal Equipment) configured device is

shown below.

.title "RS-232-C Interface"

This example shows the skeleton of a program for implementing an
RS-232-C interface in hardware and software.

; Set up EQUATE table for Peripheral file registers used in the program.

SCICCR .equ PO50
SCICTL .equ PO51
BAUDMSB .equ P052
BAUDLSB .equ P053

TXCTL .equ PD54
RXCTL .equ PO55
RXBUF .equ PO57
TXBUF .equ PO59
SCIPCl .equ POS5SD

SCIPC2 .equ POSE

;

DATAIN .equ R2
DATAOUT .equ R3
B9600 .equ 15

.text 07000h
START DINT
; SCI Initialization

MOV #000h,SCICTL
MOV #077h,SCICCR

MOV #HI(B9600) , BAUDMSB
MOV #L0(B9600) ,BAUDLSB
MOV #002h,SCIPC1
MOV #022h,SCIPC2
MOV #060h,SCIPRI
MOV #033h,SCICTL

MOV #200,B
LDSP
EINT

subroutine TXCHAR.

;SCI Configuration Control Register

;SCI Operation Control Register

;Baud Rate Select MSB Register

;Baud Rate Select LSB Register
;Transmitter Int. Control/Status Register
;Receiver Int. Control/Status Register
;Receiver Data Buffer Register

;Transmit Data Buffer Register

;SCI Port Control Register 1

;SCI Port Control Register 2

; Define registers & constants used in program

;Temporary register for received data.
;Temporary register for transmitted data.
;Baud Rate Register value for 9600 BAUD.

;SCI SW RESET.

;1 stop bit, even parity, Asynchronous,
; Idle line protocol, 8-bit characters.
;Set for 9600 BAUD (@ 19.6608MHz)

;Set SCICLK as Function Pin.

;Set SCIRXD,SCITXD as input.
;SCIRX interrupt low priority.
;Release SCI, Set Internal Clock,
; Sleep=0,RXENA,TXENA

;Start stack pointer at R200.

;Enable Interrupts

Main part of program manages and stores the data. When the program is
ready to receive new data it calls subroutine RXCHAR. When the
program is ready to transmit, it loads register DATAOUT and calls

SCI Module Specific Applications

MAIN

RECEIVE CALL
MOV

XMIT MOV
CALL
JMP

RXCHAR ;Get next character
A,DATAIN

DATAOUT,A

TXCHAR ;Transmit character.
MAIN

SCI receiver subroutine.
The subroutine brings CTS high to signal that the TMS370 is ready to
receive data, then it waits until a character is received. After a
character has been received, CTS is pulled low again to stop- transmission
by the other device and the character is saved in register A.

RXCHAR MOV #005h,SCIPC1 ;Set CTS high. (TMS370 ready to receive)
RXWAIT BTJ2Z #040h,RXCTL,RXWAIT ;Loop until character received.
MOV #001h,SCIPCl ;Set CTS low to stop transmission.
MOV RXBUF, A ;Save received character.
RTS
SCI transmitter subroutine. .

before transmitting. The character is then sent and the TXCTL register is

; The subroutine waits for the other device to bring the DTR line high

polled to make sure the character has been transmitted before continuing.

TXCHAR BTJZ
TXWAIT BTJZ

MOV
RTS

; Set up

.sect
.word
.word
.word
.word
.word
.word

#080h,ADIN, TXCHAR ;Wait for DTR to go high.

#080h, TXCTL, TXWAIT ;Wait until previous characters are
; transmitted out.

A, TXBUF ;iSend cut the character.

interrupt vector addresses.

"VECTORS",07FF2h

START ;No interrupts are used:

START ; All vectors will jump to 'START'.
START

START

START

START

7-5

SCI Module Specific Applications

7.2 Dumb-Terminal Driver

7.2.1 Use TMS370C050 SCI to Interface to Dumb-Terminal

The power of the TMS370C050 microcontroller allows it to control a large
number of tasks at the same time. The on-chip peripherals can operate inde-
pendently of each other, releasing the CPU to do other tasks. This example
shows a TMS370C050 microcontroller configured as a dumb-terminal driver.
ASCII data are received from a terminal and stored in a buffer. Data to be
transmitted are stored in another buffer and shifted out of the SCI when the
terminal is ready to receive. An example of how the TMS370C050 and the
terminal are connected is shown in Figure 7-2.

TMS370C050

scirxo 32 INTERFACE N

_J
scmxn}zi<— (ottpeed _ Ld] KEYBOARD

DUMB TERMINAL

MONITOR

Y

[}

Figure 7-2. Terminal Interface Example

This example uses the X-On/X-Off method of handshaking. Only the data
transmit and receive lines are needed because the handshaking is done in
software. When either the terminal or TMS370 receive buffers fill up, the re-
spective device forces an X-Off (013h) onto the transmit line to stop the other
device from transmitting. When the buffer on either device empties sufficiently
the respective device transmits an X-On character (011h) and the other device
begins transmitting again. This simple and effective handshaking technique
eliminates the need for additional signals and/or hardware to control the
transmission. Because the receive and transmit routines are independent and
interrupt driven they can be combined with other routines to expand the uses
beyond that of a simple terminal controller.

The example shown below is the framework for a terminal controller showing
the code necessary for receiving from and transmitting to the terminal. When
the program receives a character it automatically branches to RXINT, the SCi
receiver interrupt routine, where character is stored in the receiver buffer. If
the 32 character receiver buffer contains more than 27 characters, the receiver
immediately sends an X-Off signal to the terminal to stop the flow of data to
the controller. Thee 27 character limit is set because the terminal will not rec-
ognize the X-Off immediately and may send a few more characters. When the
controller is ready to process the received data it pulls the character from the
receiver buffer. If the buffer contains less than 4 characters and an X-Off had
been previously sent then an X-On signal is sent to the terminal to start data
transmission to the controller again.

SCI Module Specific Applications

;

SCCRO
SCCR1
SCCR2

SCICCR
SCICTL
BAUDMSB
BAUDLSB
TXCTL
RXCTL
RXBUF
TXBUF
SCIPC1
SCIPC2
SCIPRI

COMSTAT
LOCSTAT
REMSTAT
RXPTR
RXPTRI
RXDIFF
TXPTR
TXPTRI
TXDIFF
RXBUFFER
TXBUFFER

i

TXLIMIT
RXLIMIT
RXLIMIT2
XON
XOFF

START

After the data is manipulated by the controller (special characters added,
brightness or cursor position changed), subroutine TXCHAR is called. This
subroutine loads the data into the transmitter buffer and enables the TX inter-
rupt. The program jumps to the interrupt routine where the character is tran-
smitted out. If the terminal has sent an X-Off, the routine waits until an X-On

is received to transmit.

.title "SCI Terminal Driver"

Set up equate table for peripheral registers used in program.

.equ PO1l0
.equ PO1l1
.equ PO1l2
.equ PO50
.equ PO51
.equ PO052
.equ PO053
.equ PO054
.equ PO55
.equ PO057
.equ PO59
.equ PO5D
.equ POSE
.equ POSF

;System configuration register assignments.

;SCI Configuration Control Register
;SCI Operation Control Register

;Baud Rate Select MSB Register

;Baud Rate Select LSB Register
;Transmitter Int. Control/Status Register
;Receiver Int. Control/Status Register
;jReceiver Data Buffer Register
;Transmit Data Buffer Register

;SCI Port Control Register 1

;SCI Port Control Register 2

;SCI Priority Control Register

Allocate register space for registers used in program. Also mark
beginning of spaces to be used by 32 byte data transfer buffers.

.equ R2
.dbit O,COMSTAT
.dbit 1,COMSTAT

.equ R3
.equ R4
.equ RS
.equ R6
.equ R7
.equ R8
.equ R9
.equ R4l

;Communications Status Register

;X-Status from local TMS370 (1=Xoff)
;X-Status from remote terminal (1l=Xoff)
;Location of last received data in BUFFER.
;Interrupt routine data pointer.

;Number of characters in RXBUFFER.

;Next location to be transmitted in BUFFER.
;Interrupt routine data pointer.

;Number of characters in TXBUFFER.
;Beginning of 32 byte receiver data buffer.
;Beginning of 32 byte transmit data buffer.

Define constants used in program.

.equ 27
.equ 27
.equ 4
.equ 01l1lh
.equ 013h

.text 07000h

DINT

Initalize SCI.

MOV #077h,SCICCR

MOV #000h, SCICTL
MOV #000h , BAUDMSB
MOV #00Fh , BAUDLSB
MOV #001h,RXCTL
MOV #001h, TXCTL
MOV #002h,SCIPC1
MOV #022h,SCIPC2
MOV #050h, SCIPRI

MOV #033h,SCICTL

;Maximum # of characters in buffers before
; XOFF or XON is sent.

;Control-Q character.
;jControl-S character.

;1 stop bit, even parity, Asynchronous,
; Idle line protocol, 8-bit characters.
;SCI SW Reset.

;Set for 9600 BAUD (@ 20MHz).

i
;Enable SCIRX INT.

;Enable SCITX INT.

;Set SCICLK as function pin.
;Set SCIRXD,SCITXD as input.
;SCIRX INT - High priority.
;SCITX INT - Low priority.
;Release SCI, Internal Clock,
; Sleep=0,RXENA,TXENA.

7-7

SCI Module Specific Applications

; Clear data registers.

CLR COMSTAT
CLR RXPTR
CLR RXPTRI
CLR RXDIFF
CLR TXPTR
CLR TXPTRI
CLR TXDIFF
MOV #200,B
LDSP

EINT

the data buffer.

MAIN
i
CMP #00H, RXDIFF ;Characters waiting to be processed?
JEQ NORCVR ; If not, continue on.
CALL RXCHAR ;Pull character from RXBUFFER.
MOV A,DATA
NORCVR NOP
; . ;Massage data for terminal.
;(i.e. Formatting, Uppercase, etc)
MOV DATA,A
CALL TXCHAR ;Place character in TXBUFFER to be
; transmitted.
JMP MAIN
B SCI Receiver Subroutine.
; This routine is called whenever the program is ready to process a
; character in the receiver buffer.
RXCHAR
BTJO #OFFh,RXDIFF,CHKXON ;Any characters in buffer?
JMP RXCHAR ; 1f not, wait.
CHKXON DEC RXDIFF ;One less character in RXBUFFER.
JBITO LOCSTAT,GRABCHAR ;XON already sent? Don't send another.
CMP #RXLIMIT2,RXDIFF ;Receiver buffer emptying?
JGE GRABCHAR ; No, do not send XON.]
WAIT1 BTJZ #080h, TXCTL,WAIT1 ;Wait until present transmission complete.
MOV #XON, TXBUF ;Put XON in transmitter buffer.
SBITO LOCSTAT ;I have sent an XON.
GRABCHAR PUSH B
MOV RXPTR,B ;Increment pointer.
INC B
BTJZ #020h,B,NOROLL1 ;Does RXPTR need to be rolled over?
MOV 40,B ; Yes, reset RXPTR to start of RXBUFFER.
NOROLL1 MOV B,RXPTR ;Save new value of RXPTR.
MOV RXBUFFER(B) ,A ;Get new value from RXBUFFER.
POP B
RTS

7-8

Place main block of code here.
Receiver Interrupt routine is called and the character is stored in
When the program is ready to process a character
that has been received the subroutine RXCHAR is called.
character is ready to be transmitted, the routine TXCHAR is called
and the character is transmitted.

;Set status flags to XON.
;Clear data pointer registers.

;Set stack pointer below BUFFER table.

;Global interrupt enable.

i

When a character is received the SCI

When a

SCI Module Specific Applications

: SCI Transmitter Subroutine.
H This routine is called whenever the program is ready to transmit a
; character to the terminal.

TXCHAR
CMP #TXLIMIT,TXDIFF ;Wait until there is room in buffer.
JGE TXCHAR
PUSH B
MOV TXPTR,B
INC B ;Next character to be transmitted.
BTJZ #020h,B,NOROLL2 ;Does TXPTR need to be rolled over?
MOV #0,B ;Reset TXPTR to beginning of TXBUFFER.
NOROLL2 MOV B, TXPTR ;Save new value of TXPTR.
INC TXDIFF ;Inc. # of characters to be transmitted.
MOV A, TXBUFFER(B) ;Save character in transmitter buffer.
POP B ;Restore value of B.
OR #001h, TXCTL ;Enable TX interrupt.
RTS ;Exit.
; SCI Transmitter Interrupt Routine.
; This routine is called whenever the program is ready to transmit a
; character to the terminal.
TXINT ’
JBIT1 REMSTAT,TXEXIT ;If terminal has sent XOFF, do not
; transmit.
PUSH A
PUSH B
INC TXPTRI ;Next BUFFER location.
BTJZ #020h, TXPTRI ,NOROLL3 ;If TXPTRI past end of buffer, clear it.
CLR TXPTRI ;Set TXPTRI to beginning of buffer.
NOROLL3 DEC TXDIFF ;If so, nothing to transmit.

MOV TXPTRI,B ;
MOV TXBUFFER(B) ,A
TXWAIT1 BTJZ #080h, TXCTL,TXWAIT1 ;Wait until previous characters have
; finished transmitting.
MOV A,TXBUF ;Transmit character.
B

POP ;Increment TXPTR.

POP A ;

BTJO #OFFh,TXDIFF,TXEXIT ;If no more characters to send,
AND #OFEh, TXCTL ; disable interrupts.

TXEXIT RTI
SCI Receiver Interrupt Service Routine

XOFF characters sent by the terminal. The received characters are

i
H This interrupt routine receives characters and checks for XON and
H stored in RXBUFFER for the subroutine RXCHAR ro manipulate them.

RXINT
PUSH A ;Save A register contents.
MOV RXBUF,A ;Grab received character from buffer.
CMP #XON,A ;Was an XON received?
JNE TRYXOFF
SBITO REMSTAT ;Set flag: XON received.
JMP RXDONE
TRYXOFF CMP #XOFF ,A ;Was an XOFF received?
JNE SAVECHAR
SBIT1 REMSTAT ;Set flag: XOFF received.
JMP RXDONE
SAVECHAR
PUSH B ;Save B register contents.
MOV RXPTRI,B ;Point to location to store new character.
INC B
BTJZ #020h,B,NOROLL4 ;Does RXPTRI need to be rolled over?
MOV #0,B ;Reset RXPTRI to beginning of BUFFER.
NOROLL4 MOV B,RXPTRI ;Save new value of RXPTRI.
MoV A ,RXBUFFER(B)
INC RXDIFF ;# of stored characters + 1.

7-9

SCI Module Specific Applications

RXWAIT

RXDONE

PO

JB
CM
JL
BT
MO
SB

PO
RT

Se

P B ;Restore B register contents
IT1 LOCSTAT,RXDONE ;XOFF already sent? Don't send another.
P #RXLIMIT,RXDIFF ;Receiver buffer getting full?
RXDONE ; No, exit interrupt routine.
Jz #080h, TXCTL, RXWAIT ;Wait until present transmission complete.
\ #XOFF , TXBUF ;Put XOFF in transmitter buffer.
IT1 LOCSTAT ;I have sent an XOFF.
P A ;Restore A register contents.
I ;End of Receiver interrupt routine.’
tup interrupt vectors adresses.
.sect "VECTORS",07FFOh
.word TXINT ;SCITX interrupt routine.
.word RXINT ;SCIRX interrupt routine.
.word START ;All other vectors will jump to 'START'.

.word START
.word START
.word START
.word START
.word START

There are a few things that should be noted about any terminal controller
code. The most important is to watch the timing of the transmission of X-Off
and X-On characters from the receiver routines. It is important that as soon
as the receiver buffer passes its limit (in this case 27 characters) that an X-Off
be transmitted to make sure that the buffer does not overflow. A problem
arises in that the routine to transmit the X-Off character should be placed in-
side the RXINT routine so that it can be called immediately Unfortunately,
you have to wait to make sure that the current transmission is finished before
starting the X-Off transmission. With all this waiting and transmitting inside
the RXINT routine, it is possible at high SCI speeds that the routine will not
be able to finish the current receiver interrupt and get the next character out
of RXBUF before it is overwritten.

There is no simple way around this problem. One suggestion is to find the
maximum time it takes for the interrupt routine with the X-Off transmission
and tailor your SCI speed accordingly. If the Receiver buffer size is greatly
increased, it may be possible to wait for the next transmitter interrupt to send
the X-Off. You may also want to poll the receiver overrun flag and transmit a
special NAK (Negative AcKnowledge) character to the terminal to have it re-
transmit the data. The exact solution for your particular case depends on your
application.

SCI Module Specific Applications

7.3 Low-Power Remote Data Acquisition

7.3.1 Use TMS370C050 in STANDBY Mode with SCIRX Wake-Up Procedure

The low-power modes and flexible serial interface of the TMS370 family make
it ideal for applications involving remote sensing. In this application example,
a TMS370C050 is acting as a climate recorder in a remote location. Data from
measuring instruments are collected via the on-board A/D, and stored until
requested by the host controller. Power consumption is a major concern be-
cause the system is designed to be battery-operated and serviced infrequently.
A basic configuration is shown below in Figure 7-3. The TMS370C050 is
connected through the A/D port to a variety of analog sensing devices. The
transmit and receive lines are buffered through external logic to whatever lev-
els are necessary to communicate with the host controller. The communi-
cations link may be simple as a direct wire connection or as complicated as a
modem interface.

TMS370C050

ANO |

w
]

AN1

]

AN2 |

i

AN3

i
(7

HOST AN4
CONTROLLER

=
i

AN5 SENSOR 6

i
-

ANG | SENSOR 7

i

HOST 29

TRANSMIT

-

i
w

SCIRX AN7 SENSOR 8

-

w
w
-]
-

Vee
Vee2]

l'}J

|

HOST 30
———-{s————— SCITX
RECEIVE

Vss1|
Vss2]

=gl K]
-]
[~}
N

0

Figure 7-3. Remote Data Acquisition Example

SCI Module Specific Applications

SCCR2

SCICCR
SCICTL
BAUDMSB
BAUDLSB
TXCTL
RXCTL
RXBUF
TXBUF
SCIPC1
SCIPC2
SCIPRI

Time between updates

The program uses Timer 1 to periodically read the A/D values and store them
in ATABLE. Timer 1 can also bring the device out of STANDBY mode through
the Timer 1 interrupt. In this way the device will draw less than one-quarter
its normal operating current most of the time. The A/D conversion routine is
not shown here, but examples can be found in the TMS370 Family Data Ma-
nual and related application notes. In particular the A/D routine is similar to
the one shown in the Design Aids section of the TMS370 Family Data Man-
ual. The data can be stored in RAM, or if power loss is a consideration, EEP-
ROM memory may be used.

Because of the minimum speed of the part and the size of the timer registers,
the longest timer period we can have is 33.6 seconds. For this example the
time between updates is 10 minutes. To allow for the extra time a counter is
included in the timer interrupt routine. |f a full 10 minutes have not passed,
the part goes back into STANDBY mode to wait for the next interrupt. The
equaticen used to calculate the timer and counter values is:

4 x PRESCALE

x Timer 1 value xInterval counter

CLKIN

For this example:
4 x 256

10 min = 600 sec = x 65104 x 18
2 Mhz

receipt of information from the host (SCIRXD goes low), the remote ‘050 will
come out of STANDBY mode. If the received data does not match the inter-
nal address, the part goes back into STANDBY mode. If the address matches,
the remote will first send one byte of information with the number of bytes of
data to be sent, followed by the data itself. After the device sends all the data,
it will put itself back into STANDBY mode to wait for another inquiry or data
acquisition.

The source code for this application is as follows:

.title "Remote Data Aquisition program"

This routine uses Timer 1 and SCI receiver interrupts to bring a
TMS0370C050 out of STANDBY mode. The Timer 1 interrupt is used to
collect data from the A/D converter.

Set up EQUATE table for Peripheral File registers used in the program.

.equ P012 ;System configuration register assignments.
.equ P0O50 ;SCI Configuration Control Register

.equ PO51 ;SCI Operation Control Register

.equ P0O52 ;Baud Rate Select MSB Register

.equ P0O53 ;Baud Rate Select LSB Register

.equ P054 ;Transmitter Int. Control/Status Register
.equ PO55 ;Receiver Int. Control/Status Register
.equ P0O57 ;Receiver Data Buffer Register

.equ P0O59 ;Transmit Data Buffer Register

.equ PO5D ;SCI Port Control Register 1

.equ POSE ;SCI Port Control Register 2

.equ POSF ;SCI Priority Control Register

SCI Module Specific Applications

T1CNTRMSB .equ PO040
T1CMSBLSB .equ P041
T1CMSB .equ P042
T1CLSB .equ P043
T1CCMSB .equ P044
T1CCLSB .equ PO045
T1CTL1 .equ P049
T1CTL2 .equ PO4A
T1CTL3 .equ PO4B
T1CTL4 .equ PO04C
T1PC1 .equ PO04D
T1PC2 .equ PO4E
T1PRI .equ PO4E
; Allocate register space for
; routine.
ADDRESS .equ R2
ICOUNT .equ R3
ATABLE .equ R4
; Define
TIMEMSB .equ OFEh
TIMELSB .equ 050h
INTERVAL .equ 18
MYADDRESS .equ OFFh
.text 07000h
START DINT

;Timer 1 register assignments.

variables and data table used in the

;Temp register for Received value.
;Counter for number of Timer 1 interrupts
; before data is sampled for table.
;Table where A/D data is stored before

; being transmitted.

constants used 1n program.

; System Initialization

MOV
; SCI Initi

MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV

; Timer 1 I

MOV

#041h,SCCR2
alization

#000h,SCICTL
#077h,SCICCR

#000h, BAUDMSB
#00Fh, BAUDLSB
#001h,RXCTL
#022h,SCIPC2
#070h,SCIPRI
#033h,SCICTL

nitialization

#TIMEMSRE,T1CMSB
#TIMELSB,T1CLSB
#010h,T1CTL4
#007h,T1CTL1
#001h,T1CTL3
#001h,T1CTL2

#INTERVAL, ICOUNT

#200,B
#000h,B

;Interrupt timing.

;Number of timer interrupts before data is
; stored.
;Personal address of this device.

;Disable interrupts while initializing.

; STANDBY mode, no Priv mode, no osc fault

; reset.

;SCI SW Reset.

;1 stop bit, even parity, Asynchronous,
; Idle line protocecl, 8-bit characters.
;Set for [9600 BAUD @20 MHz.

;Enable SCIRX INT.

;Set SCIRXD, SCITXD function.
;SCIRX interrupt low priority.
;Release SCI SW Reset.

; Internal Clock, TXENA, RXENA.

;Set timer values

;Set Tl 1nterrupts to low priority.
;Dual-compare,Disable interrupts.
;System clock / 256

;Disable T1 interrupts, clear flags.
;Disable Overflow interrupts,Reset T1.

;Initialize counter

;Initalize the stack pointer to start at

; register 200. (away from ATABLE)

;Reset ATABLE pointer.

;Interrupts must be enabled to exit
STANDBY mode.

SCI Module Specific Applications

Main part of program actually does nothing but wait for interrupts.
The Timer 1 and SCIRX interrupt service routines actually do the work.

MAIN IDLE ;Go into low-power mode
JMP MAIN ;Main Loop
; Timerl Interrupt Routine
; When the interrupt routine is called the part will come out of STANDBY
; mode. The routine will collect information from the A/D and store it
; it in register A. The data is then loaded into ATABLE so it can be
; easily transmitted out. The number of bytes of stored data is in B.
; At the end of the routine the part will return to the main program
3 where it will go into STANDBY mode again.
TIMERINT AND #00Fh,T1CTL3 ;Clear interrupt flags.
DJNZ ICOUNT, DONE ;Time to get new A/D value? If not, skip.
e ;A/D data gathering & formatting. Value is
; stored in register A.
INC B ;Increment data counter/pointer.
MOV A,ATABLE-1(B) ;Store data in ATABLE.
MOV #INTERVAL, ICOUNT ;Restore counter.
DONE RTI ;End of service routine
; SCI Receiver Interrupt Routine
; This routine is called when the part receives a low pulse on the
; SCIRX pin. The received datum is compared against an internal address
; to see if the device was addressed. If so, the routine transmits one
i character indicating the number of bytes to be transmitted. The
: routine then transmits all the data stored in ATABLE, LIFO.
RXINT MOV RXBUF ,ADDRESS ;Read Received address.
BTJO #080h,RXCTL , RXDONE ;If there was an error, wait for another
; transmission.
CMP #MYADDRESS ,ADDRESS ;1f address not mine, ignore wake-up
; call.
JNE RXDONE ;
MOV B, TXBUF ;# of Characters to be transmitted.
CMP #00,B ;If no data stored yet, ignore.
JEQ WAIT
LOOP BTJZ #080h, TXCTL , LOOP ;Wait until character sent.
MOV ATABLE(B)-1,A ;Transmit character.
MOV A, TXBUF ;
DJNZ B,LOOP ;If not done, send next character.
WAIT BTJZ #040h, TXCTL ,WAIT ;Wait for last character to be sent.
RXDONE RTI ;Exit interrupt routine and go back into
; STANDBY mode.
i Set up interrupt vectors.
.sect "VECTORS",07FF2h
.word RXINT ;SCIRX interrupt routine.
.word TIMERINT ;Timer 1 interrupt routine.
.word START ;All other vectors will jump to 'START'.
.word START
.word START
.word START
.word START

Appendix A
SPI Control Registers

The SPI is controlled and accessed through registers in the Peripheral File.
These registers are listed in Figure A-1 and described in the TMS370 Family
Data Manual. The bits shown in shaded boxes in Figure A-1 are Privilege
Mode bits, that is, they can only be written to in the Privilege Mode.

PERIPHERAL. FILE FRAME 3: SERIAL PERIPHERAL INTERFACE (SP!) CONTROL REGISTERS

ADDR PF| BIT7 BT6 | BT5 | Br4 BIT 3 BT2 | BT1 BIT 0
sPI CLOCK | SPIBIT | SPIBIT | SPIBIT &Pl SPI 8Pl
1030 30 |o\ RESET|POLARITY | RATEZ | RATE1 | RATEO | CHAR2 | CHAR1 | cHARo [SPICCR
RECEIVER | SP!I MASTER/ SPI
1031h 31 | GUERRUN | INT FLAG | —— --= === SLAVE | TALK | \NTENA [SPICTL
1032h 32
T T0 RESERVED
1036h 36
1037h 37| ~ 'SPl DATA BUFFER REGISTER SPIBUF
1038h 38 RESERVED
1038k 39 SP! SERIAL DATA REGISTER SPIDAT
103Ah 3A
0 TO RESERVED
103ch ac
SPICLK | SPICLK | SPICLK | SPICLK
103dh 3D | --- - - - DATA IN |DATA OUT|FUNCTION| DATA DIR |SPIPC1
103eh 3£ | SPISMO | SPISIMO | SPISIMO | SPISIMO | SPISOMI | SPISOMI | SPISOMI | SPISOMI [0
DATA IN |DATA OUT [FUNCTION| DATA DIR | DATA IN |DATA OUT|FUNCTION| DATA DIR
o3 o | oy || e | — | — | — | — | — |soen

Figure A-1. SPI Control Registers

Appendix A

Appendix B
SCI Control Registers

The SCI is controlled and accessed through registers in the Peripheral File.
These registers are listed in Figure B-1 and described in the TMS370 Family
Data Manual. The bits shown in shaded boxes in Figure B-1 are Privilege
Mode bits, that is, they can only be written to in the Privilege Mode.

PERIPHERAL FILE FRAME 5: SERIAL COMMUNICATION INTERFACE (SCI) CONTROL REGISTERS

ADDR PF[BT 7 BT6 | BTS5 | BT4 | BT3 BIT 2 BT 1 BT 0
STOP |EVEN/ODD| PARITY | ASYNC/ |ADDRESS/| Scl sci sci

1050h 050} ‘mire | TPARITY | ENABLE | ISOSYNC | IDLE WUP| CHAR2 | CHARY | CHARo |SCICCR
sl)

1051h 051| - - |owhEeET| CLOCK | TXWAKE | SLEEP | TXENA | RXENA |SCICTL

1052h 052 (BIT 15 BAUD RATE SELECT REGISTER MSB BIT 8 |BAUD MSB

1053h 053 [BIT 7 BAUD RATE SELECT REGISTER LSB BIT 0|BAUD LSB
- . ___ - T scitx

1054h 054 | TXRDY |TX EMPTY SciTX |TxetL

RX RX SCI RX

1055h 055| X | RXRDY | BRKDT FE OE PE whkg | SEIRX | RxeTL

1056h 056 RESERVED

1057h 057 ~ RECEIVE DATA BUFFER REGISTER RXBUF

1058h 058 RESERVED

1058h 050 TRANGMIT DATA BUFFER REGISTER TXBUF

105Ah QSA[I —

1058h 058 RESERVED

f0sch osC| o ooeeemEme]

SCICLK | scicLk | scicLk | scicLk
108Dh 0sD| --- -—- - -== | DATA IN |DATA OUT|FUNCTION| DATA DIR |SCIPC1

105Eh OSE SCI TXD | SCI TXD | SCI TXD | 8CI TXD | SCI RXD | §CI RXD_| §CI RXD | SCI RXD |gn~ipco
DATA IN |DATA OUT|FUNCTION| DATA DIR | DATA IN |DATA OUT|FUNCTION| DATA DIR

Figure B-1. SCI Control Registers

— —_— J— —_— SCIPRI

105Fh O5F |

B-1

Appendix B

Appendix C
TMS0170 Specifications

The TMS0170 Vacuum Fluorescent (VF) Display Driver is a one-chip interface
between low voltage digital logic (5.0 V) and low voltage (< 18 V) VF dis-
plays.

Key Features

33 individually controllable VF drivers. 8 high current drivers and 25 low
current drivers.

Blanking input allows duty cycling of outputs for brightness control.

Serial interface minimizes connections between the TMS0170 and the
digital system.

Multiple TMS0170’s can be cascaded using the Data Out latch.
Seif-ioad feature aliows elimination of Load Enable line.

Single supply, from 8 V to 18 V.

Fabricated with high voltage PMOS technology.

40 pin DIP and 44 pin PLCC plastic packages available.

C-1

Appendix C

C.1 Functional Description

C.1.1 Architecture

The TMS0170, shown in Figure C-1 as a block diagram, consists of a 34-bit
data shift register, a 33-bit data latch, and 33 VF drivers. A bit pattern is
shifted into the TMS0170 using the clock input, then transferred to the data
latch using the load enable input. The Blanking input can be used to turn off
all of the drivers at any time. By duty cycling the Blanking input, brightness
of the display can be varied.

CLOCK
BIT (SEE NOTE) BIT
33 00
DATA m—-L DATA SHIFT REGISTER j—— DATA OUT
33.01)
33
LOAD LOAD BITS
) | NS
DATA LATCH
25 8
BITS BITS
LOW CURRENT HIGH CURRENT
DRIVERS DRIVERS
BLANK

* Note: Bit 33 is the last bit shifted into DATA IN pin.
Figure C-1. TMS0170 Block Diagram

Appendix C

C.1.2 Shift Register

The 34-bit shift register consists of 34 D-type flip-flops. The bits are num-
bered from 33 down to 00. Each data bit is clocked in on the rising edge of
the Clock In pin, and enters the shift register in flip-flop #33. Upon each
successive Clock In rising edge, the bit is shifted sequentially through the shift
register, from flip-flop #33 to flip-flop #00. The data in the first 33 flip flops
(from #33 down to #01) is transferred into the data latch on the rising edge
of Load Enable. Flip flop #00 is not connected to the data latch, but instead,
is connected to the Data Out output pin. This output can be used for cas-
cading several TMS0170’s together or for self loading. All of the flip flops in
the shift register are cleared by the rising edge of Load Enable.

C.2 Interface

The interface between the TMS0170 and the digital logic consists of 4 lines;
a Clock In line, a Data In line, and a Load Enable line, and a Blanking input.

Data Input: Determines what data value is loaded into the data shift
register. This data can then be latched to the output drivers upon a valid
Load Enable input. A latched high level will turn the output driver on.
A latched low level will turn the output driver off.

Clock Input: The rising edg e of the Clock lnput will latch the current
value of the Data Input into the data shift register and cause the shift

register to shift by one.

Load Enable: The rising edge of the Load Enable input transfers the
data from the data shift register into the data latches and sets the data
shift register to zero.

Blanking: This input is used to disable all the drivers. A low level on this
pin will force all driver outputs to a low level. A high level will enable
the drivers to output whatever data has been loaded into their respective
latches. This pin has an internal pull-up resistor.

C-3

Appendix C

C.3 Pin Assignment Diagram

c-4

Vgs— 1 ' so}—-prank
DATA IN— 2 39———Vpp
cLOCK—{ 3 38— LOAD ENABLE
LC OUTPUT1BIT 32)—] 4 37}——DATA oUT
LC OUTPUT (BIT 21)—] 5 36 —— LC OUTPUT (BIT 20)
LC OUTPUT (BIT 22)—] 6 T 35}——LC OUTPUT (BIT 25)
LC OUTPUT (BIT 23)— 7 M 34}——LC OUTPUT (BIT 24)
LC OUTPUT (BIT 30)—] 8 s 33}——LC OUTPUT (BIT 19)
LC OUTPUT (BIT 13)— 9 o 32 }——LC OUTPUT (BIT 12)
LC OUTPUT (BIT 14)—] 10 1 31}——LC OUTPUT (BIT 17)
LC OUTPUT (BIT 15)— 11 7 30}—— LC OUTPUT (BIT 16)
LC OUTPUT (BIT 1)—] 12 0 29}——LC OUTPUT (BIT 11)

LC OUTPUT (BIT 33)—
LC OUTPUT (BIT 5)—
LC OUTPUT (BIT 6)—
LC OUTPUT (BIT 7)——
HC OUTPUT (BIT 28)—
HC OUTPUT (BIT 27)——
HC OUTPUT (BIT 31)——
HC OUTPUT (BIT 18)——

N = e 2 a2 o
O © O NO O & W

28
27
26
25
24
23
22
21

—LC OUTPUT (BIT 4)
——LC OUTPUT (BIT 9)
|——LC OUTPUT (BIT 8)
——LC OUTPUT (BIT 3)
|—— HC OUTPUT (BIT 29)
—— HC OUTPUT (BIT 26)
—— HC OUTPUT (BIT 10)
—— HC OUTPUT (BIT 2)

Figure C-2. TMS0170 DIP Pin Out

Appendix C

C.4 Electrical Specifications

C.4.1 Recommended Operating Conditions

Parameter Min Max Units
Vss Supply Voltage 8 18 \
Viy High Level Input Voltage Vpp+ 35 | Vgg+ 0.3 \
ViL Low Level Input Voltage Vpp- 03 | Vpp+ 0.8 Vv
T, Operating Free-Air Temperature -40 85 °C

C.4.2 Electrical Characteristics over Operating Free Air Temperature Range

Parameter Min Max Units

Igs Supply Current 17 mA
(all outputs open)
Vgs=8Vto18V

Vou High Level Output Voltage Vgs- 0.3 \"
(low current drivers)
Vgs =95V Igy = 1.5 mA

Vo High Level Output Voltage Vgs- 2.5 \"
(high current drivers)
Vgs = 9.5V Igy = 30.0 mA

Von High Level Output Voltage Vgs- 5.0 \Y
(DATA OUT output)
Vgs = 9.5V lgy = 500 pA

VoL Low Level Output Voltage
(all drivers)
Vgs =95V Ig =1 pA Vpp+ 0.4
Vss =95V IOL 500 puA Vpp+ 5.0

VoL Low Level Output Voltage Vpp+ 0.4 v
(DATA OUT output)
Vgs =95V IgL =1 HA

iy High Level Input Current 1 HA
(CLOCK, DATA, LOAD)
Vin = Vss

it Low Level Input Current 1 pA
(CLOCK, DATA, LOAD)
ViL = Voo

iy High Level Input Current -5 -126 WA
(BLANK)
Vi =356V

it Low Level Input Current -5 -125 HA
(BLANK)
ViL = Vop

<<

C-5

Appendix C

Appendix D

Glossary

Address Bit mode: An SCI mode of communication incorporating an extra
bit into each frame to distinguish address frames from data frames. Setting the
Address bit to a logic 1 signifies a frame beginning a new block.

Asynchronous mode: A communication format in which no synchronizing
clocks are used. The data being transmitted is repeated several times and a
majority vote is taken of selected bits to determine the transmitted value. This
format is commonly used in RS-232-C and systems communications.

14
Block: A collection of one or more frames, the first of which is an address
frame.

Baud rate: The communication rate for digital transfers, measured in line
changes per sec. For serial communications, this equals 1 bit per sec.

Character: A group of bits, from 1 to 8 bits in length, that makes up one unit
of data. »

DCE: Data Communications Equipment. The hardware responsible for con-
trolling digital communications.

DTE: Data Terminal Equipment. Equipment which receives or originates data
transfer in a communications network.

Double-Buffered: Using a temporary storage register to hold data between
register reads or writes. In the SCI, the temporary registers are TXBUF and
RXBUF. They are used to hold data while transmitting or receiving and
TXSHF or RXSHF are being used, speeding up data transfer and reducing the
possibility of transmitter or receiver overruns.

Frame: The basic packet of serial communication. It typically contains one
start bit, 1-8 bits of data, and one or two stop bits. It may also contain a parity

Full-Duplex: A mode of communication in which transmission and recep-
tion of signals happens simultaneously.

Idle Line Mode: A serial communications protocol in which the beginning
of a new block (an address frame) is identified as being the first frame after
an idle period.

Idle period: A period of ten bits or longer in which no data is received.

Isosynchronous mode: A communication format in which synchonizing
clocks are used. This is typically faster than Asynchronous communications
because one bit of data is transmitted on each shift-clock cycle.

D-1

Appendix D

LSb: Least significant bit.
LSB: Least significant Byte.

Master: In its most general meaning, a mode of operation in which a mi-
crocontroller controls another microcontroller or peripheral and issues timing
signals to it. It also refers to a specific mode of operation of the SPI.

MSb: Most significant bit.
MSB: Most significant Byte.

NRZ (Non-Return-To-Zero) Format: A communication format in which
the inactive state is a logic one.

RS-232-C: An industry standard serial communications interface. The most
commonly used serial interface for personal computers.

Parity: An error checking protocol based on the assumption that the number
of 1s in a character of data is odd or even. Usually one bit is reserved in each
frame to make sure that it plus the number of bits in the actual data is an odd
or even number, depending on whether odd or even parity is used.

Protocol: The rules of communication and data format in a communications
link between two devices.

Shift-clock cycle: One cycle of the SCI clock that gates one bit of data.
For Isosynchronous communications, one shift-clock cycle gates one bit of
data or format information. In the Asynchronous mode, 16 shift-clock cycles
are needed per bit of information.

Slave: A mode of operation in which a microcontroller is controlled by and
receives synchronizing signals from another microprocessor.

UART: Universal Asynchronous Receiver/Transmitter, An interface designed
to receive and transmit asynchronous signals for a serial device.

Appendix E

References

Friend,G.E., Fike, J.L., Baker, H. C., Bellamy, J. C. Understanding Data Com-
munications. Dallas; Texas Instruments Information Publishing Center.

(1984)

Schwartz, Mischa. Information, Transmission, Modulation, and Noise. St.
Louis; McGraw-Hill Book Company. (1980)

T.l. Microcontrolier Applications Group. TMS370 Family Data Manual. Dal-
las; Texas Instruments Technical Publishing. (1988)

T.l. Digital Signal Processing Applications Group. TMS320C25 User’s Guide.
Dallas; Texas Instruments Technical Publishing. (1986)

E-1

